ECE 3040B Microelectronic Circuits

Exam 3

April 12, 2001

Dr. W. Alan Doolittle

Solutions

Print your name clearly and largely:

<table>
<thead>
<tr>
<th>Question</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Score per Question</td>
<td>100</td>
<td>71.7</td>
<td>73.9</td>
<td>56.5</td>
<td>68.1</td>
<td>71</td>
<td>60.9</td>
<td>72.6</td>
<td>65.1</td>
<td>38.7</td>
<td>46.7</td>
<td>28.5</td>
</tr>
<tr>
<td>1st 25%</td>
<td>62.81159</td>
<td></td>
</tr>
<tr>
<td>2nd 25%</td>
<td>65.94203</td>
<td></td>
</tr>
<tr>
<td>3rd 25%</td>
<td>68.84058</td>
<td></td>
</tr>
<tr>
<td>4th 25%</td>
<td>28.52174</td>
<td></td>
</tr>
</tbody>
</table>
Exam #3 Score = 19.545(Percentage of Homeworks Attempted) + 41.928
First 25% Multiple Choice and True/False (Select the most correct answer)

1.) (5-points) A MOS Capacitor consists of three regions:
 a.) Metal, semiconductor and metal regions
 b.) Metal, semiconductor and plastic
 c.) Metal, Oxide, and Semiconductor
 d.) Wood, cement and gravel.

2.) (5-points) MOSFETs always need a non-zero Gate to Source Voltage to conduct a Drain-Source current (remember to consider PMOS and NMOS enhancement and depletion devices).
 a.) True
 b.) False
 c.) I am totally confused on this question

3.) (3-points) True / False Feedback always has to be negative otherwise the circuit will not work (think about this one carefully).

4.) (3-points) True / False The body terminal of a MOSFET should always be connected to ground, regardless of whether the device is PMOS or NMOS.

For each of the following amplifiers, identify the configuration (voltage, current, transconductance, transresistance), and whether you want to have a high or low input and output resistance. Circle your answer.

5.) (3-points)
 a.) Voltage, Current, Transconductance, or Transresistance
 b.) Input Impedance should be High, Low
 c.) Output Impedance should be High, Low

6.) (3-points)
 d.) Voltage, Current, Transconductance, or Transresistance
 e.) Input Impedance should be High, Low
 f.) Output Impedance should be High, Low
7.) (3-points)
g.) Voltage, Current, Transconductance or Transresistance
h.) Input Impedance should be High/Low
i.) Output Impedance should be High/Low

Second 25% Short Answer:
8.) (10-points) Draw the cross-sectional view (view from the side) of a NMOS transistor biased in linear and in saturation modes (two separate drawings). Label the source, gate, drain, channel, substrate and indicate the doping type of the source, drain and substrate.

Linear:

![Linear Diagram]

P-type Substrate

Saturation:

![Saturation Diagram]
9. (15-points) Draw and label the energy band diagram of a NMOS Enhancement mode Capacitor in equilibrium, depletion and deep inversion (3 drawings) labeling the fermi, intrinsic, conduction and valence energies.

All regions are shown below (including accumulation, which was not asked for). In each picture, the left most material is the metal, then the oxide, with the rightmost material being the semiconductor.
10.) (10-points) Determine the voltage gain, input resistance and output resistance of the following circuit. You may assume that the Op-Amps are ideal.

\[V_a = V_{in} \frac{R_1}{R_1 + R_2} = 0.5V_{in} \]

\[V_b = \left(1 + \frac{R_1}{R_1}\right)V_a = 2V_a \]

\[V_c = V_{in} \]

\[V_{out} = -\frac{R_1}{R_1}V_b - \frac{R_1}{R_1}V_c \]

\[V_{out} = -2V_a - V_{in} \]

\[V_{out} = -V_{in} - V_{in} \]

\[\frac{V_{out}}{V_{in}} = -2 \text{ V/V} \]

\[R_{in} = 2R_1 \]

\[R_{out} = 0 \quad [V_{in} = 0 \Rightarrow V_b = V_c = 0] \]
11.) (15-points total in two parts) (a) (12-points) As an integrated circuit designer, you are asked to determine the width (W in Jaeger, Z in Pierret) of a MOSFET gate required to achieve a small signal transconductance of 0.01 A/V when used in a circuit that will have a Source-to-Gate voltage, \(V_{GS} = 1.5 \text{V} \), a Source-to-Drain voltage, \(V_{DS} = 5 \text{V} \), and a Source-to-Body voltage, \(V_{BS} = 0.0 \text{V} \). (b) (3-points) What is the drain-source current in this application? The fabrication process you are using has the following parameters:

Gate Length, \(L = 1 \mu \text{m} \)
Effective mobility, \(\mu_e = 200 \text{ cm}^2/\text{V Sec} \)
Oxide Thickness, \(t_{ox} = x_{ox} = 200 \text{nm} \)
Channel Length Modulation parameter, \(\lambda = 0.1 \text{ V}^{-1} \)
Substrate Doping, \(N_A = 1 \times 10^15 \text{ cm}^{-3} \)
Oxide relative Dielectric Constant, \(\varepsilon_{\text{oxide}} = K_0 = 3.9 \)
Substrate relative Dielectric Constant, \(\varepsilon_{\text{semiconductor}} = K_S = 11.7 \)
Substrate intrinsic concentration, \(n_i = 1 \times 10^10 \text{ cm}^{-3} \)
Dielectric Constant of free space, \(\varepsilon_0 = 8.854 \times 10^{-14} \text{ F/cm} \)

\[
0.01 = g_m = k_n (V_{GS} - V_T) (1 + \lambda V_{DS})
\]

\[
\Rightarrow g_m = \frac{I_{DS}}{(V_{GS} - V_T)} = 0.01
\]

\[
k_n = \frac{B}{L} \mu_n C_0 \quad C_0 = \frac{C_{ox}}{x_{ox}} = 1.726 \times 10^{-8} \text{F/cm}
\]

\[
V_T = 2 \Phi_F + \frac{k_T C_0}{C_{ox}} \sqrt{\frac{2 q N_A}{g_s} (2 \Phi_F)}
\]

\[
\Phi_F = \frac{2T}{q} \ln \left(\frac{N_A}{n_i} \right)
\]

\[
= 0.0259 \ln \left(\frac{1 \times 10^{15}}{1 \times 10^{10}} \right) = 0.298 \text{ V}
\]

\[
V_T = 2 (0.298) + \frac{(11.7) 8.854 \times 10^{-14}}{1.726 \times 10^{-8}} \sqrt{\frac{2 (1.6 \times 10^{-19}) (1 \times 10^{15})}{(11.7) 8.854 \times 10^{-14}}}
\]

\[
= 0.596 + 0.814
\]

\[
V_T = 1.41 \text{ V}
\]

\[
\Rightarrow 0.01 = \frac{B}{(1 \times 10^{-4}) (200) 1.726 \times 10^{-8}} (1.5 - 1.41) (1 + 0.1 (5))
\]

\[
\Rightarrow \boxed{Z = 2.15 \text{ cm}} \quad \text{It takes a huge device to meet this design requirement}
\]

\[b) \text{ from } * \quad I_{DS} = 448 \mu \text{A} \]
12. (25-points) Given the following circuit, (a) Identify the configuration of all stages in the amplifier. (b) What is the AC voltage gain, V_{out}/V_{in}? You may assume all capacitors have infinite capacitance and are thus, AC shorts. Additionally consider the circuit to be operated at low frequencies where you can neglect all small signal capacitances. Grading will be based as such: 4 points for configuration identification, 8 points for DC solution, 4 points for small signal conversion, and 9 points for small signal analysis.

\[K_n = 250 \mu A/V^2 \quad V_T = 1V \quad \lambda = 0.1 \ V^{-1} \]

DC: M1: Taking a Thevenin in the gate circuit.

\[V_{th} = \frac{300K}{700K + 300K} 10V = 3V \]

\[R_{th} = \frac{300K}{1700K} = 210K \]

Note: \[V_{th} = V_{GS1} \]

\[V_{DS1} = 10V - I_{DS1}(10K) \]

Now Assume Saturation:

\[I_{DS1} = \frac{K_n}{2} \left(V_{GS1} - V_{TN} \right)^2 \left(1 + \lambda V_{DS1} \right) \]

\[I_{DS1} = 125(\mu A/V^2) \left(3 - 1 \right)^2 \left(1 + 0.1 \left[10V - I_{DS1}(10K) \right] \right) \]

\[I_{DS1} = 500 \times 10^{-6} \left(1 + 1 - I_{DS1}(1K) \right) \]

\[I_{DS1}(1+0.5) = 1mA \]

\[I_{DS1} = \frac{666}{666} \mu A \]
Extra work can be done here, but clearly indicate with problem you are solving.

\[V_{DS_1} = 10 - 666 \mu A (10k) \]
\[= 3.33 \text{ V} \implies V_{DS_1} - V_T = 3 - 1 = 2 \checkmark \]

Assumption of saturation is valid.

DC \(M_2 \): Since the DC current source ensures a constant current, \(M_2 \) must be in saturation.

\[V_X = 2 \text{ mA} (1k) = 2 \text{ V} \]
\[V_{GS_2} = 3.33 \text{ V} - 2 \text{ V} \]
\[= 1.33 \text{ V} \]

\[g_{m_1} = \frac{I_{DS_1}}{V_{GS_1} - V_T} = \frac{666 \mu A}{\frac{3-1}{2}} = 666 \mu A / V = 6.66 \times 10^{-4} \]

\[g_{m_2} = \frac{I_{DS_2}}{V_{GS_2} - V_T} = \frac{2 \text{ mA}}{\frac{1.33 - 1}{2}} = 0.012 \text{ A} / V \]

\[R_{01} = \frac{1}{\frac{\Delta m_1}{2} (V_{GS_1} - V_T)^2} = \frac{1}{0.1 (250 \times 10^{-6}) (3-1)^2} = 20 \text{ k}\Omega \]

\[R_{02} = 720,000 \Omega \]
Extra work can be done here, but clearly indicate with problem you are solving.

AC Solution

\[V_{in} = V_{gs1} \]
\[V_{gs2} + g_{m2} V_{gs2} \left(R_{L1} || R_2 \right) = -g_{m1} V_{gs1} \left(R_{01} || R_3 \right) \]
\[V_{out} = g_{m2} V_{gs2} \left(R_{L1} || R_2 \right) \]
\[\frac{V_{out}}{V_{in}} = \frac{V_{out}}{V_{gs2}} \frac{V_{gs2}}{V_{gs1}} \frac{V_{gs1}}{V_{in}} \]
\[= \left(g_{m2} \left(R_{L1} || R_2 \right) \right) \left[\frac{-g_{m1} V_{gs1} \left(R_{01} || R_3 \right)}{1 + g_{m2} \left(R_{L1} || R_2 \right)} \right] \] \((1) \)
\[\frac{V_{out}}{V_{in}} = -g_{m1} \left(R_{3} || R_{01} \right) \]

Standard CS gain

\[\frac{V_{out}}{V_{in}} = \frac{g_{m2} \left(R_{L1} || R_2 \right)}{1 + g_{m2} \left(R_{L1} || R_2 \right)} \]

Standard CD gain

You could have written this down in step 1! Plugging in numbers,

\[\frac{V_{out}}{V_{in}} = \frac{-4.1 \ V}{1 \ V} \]