ECE 3040 Dr. Alan Doolittle

I have thoroughly enjoyed meeting each of you and hope that I have had a positive influence on your carriers. Please feel free to consult with me in your future work. If I can help you in any way, please come by and talk.

Also, if you have not already completed the online computer evaluation, please do so. I am very interested in your comments on my performance, and the class in general. The evaluation is available at:

http://www.coursesurvey.gatech.edu

Use the following as a final exam study <u>GUIDE</u>. It by no means is meant to be 100% complete. All material covered in this course is fair game for the exam.

1	Class introduction and policies	Handout
2	 Semiconductor materials Crystal structures Semiconductor materials Classifications of materials (metals, insulators, semiconductors, etc) Classifications of semiconductors (elemental, compound, binary, ternary, etc) Classifications and descriptive techniques of crystals and crystal structure (polycrystalline, crystalline, unit cells, Miller indexes, etc) Energy bandgap (what they are and where do they come from), <i>ENERGY BAND DIAGRAMS</i>, electron and hole generation 	Pierret 1.1, 1.2, 1.4, 2.1, and 2.2
3	Carrier Properties State and Carrier Distributions Equilibrium carrier concentrations • Effective mass, intrinsic carrier concentration, extrinsic materials (doped), doping types (p or n), fermi-level movement with doping, fermi-probability distributions (meaning and be able to apply), density of states, calculations of electron and hole concentrations based on doping (total ionization only), fermi-level etc, <i>LAW OF</i> <i>MASS ACTION</i> , charge neutrality, carrier freeze out, etc	Pierret 2.3 2.4, 2.5, 2.6

	Drift	
	Diffusion	Pierret 3.1
		3.2
	Generation/Recombination	3.3, 3.4
	Equations of State	
	• Drift velocity, mobility, Einstein	
	relationship, resistivity,	
	{relationships between electric	
	fields-energy band diagrams-	
	potential energy-electron and hole	
	motion}, current continuity	
	equations, electron and hole total	
	currents (drift + diffusion), processes	
	of generation and recombination and	
	under what conditions do they occur,	
	direct verses indirect bandgaps,	
	absorption coefficients and	
	absorption, excess carrier	
	concentrations, electron/hole	
	continuity equations, minority	
	carrier diffusion equations (I would	
	give you the general solution format	
	if it were more complicated than	
	simple calculus), diffusion length,	
	quasi fermi levels (concept and	
	calculation, LAW OF THE	
	JUNCTION (relates np to quasi-	
4	fermi levels and applied voltage	
	p-n Junction Electrostatics	Pierret 5.1, 5.2
	Ideal Diode	6.1
	• Poisson equation, charge neutrality,	
	ENERGY BAND DIAGRAMS	
	UNDER BIAS, built in potential,	
	step junction solution results only	
	(including depletion widths,	
	capacitances, and electric fields),	
	understand how it works!	
	• Electron and hole motion across the	
	diode (drift vs. diffusion	
	components), IV-curve and IV-	
	equations, saturation current density	
	as a function of diode design, reverse	
6	bias break down mechanisms	

	p-n Junction Small Signal Model p-n Junction Large Signal Model Diode SPICE Model	Jaeger 3.4-3.14, 13.4
	Diode Circuit Analysis and ApplicationsRectifiers, tuning elements, high	Pierret 9.2, Notes
7	frequency switches, photo-diodes, photo-detectors, etc	
	Introduction to Bipolar Junction Transistors BJT Physics Ebers-Moll Model (FULL model not included on the final, but the simplified form used for Forward active may be) • HOW it WORKS!	Pierret 10.1- 10.6 11.1 11.1
8	• Regions of operation, IV-curves, IV- equations, ENERGY BAND DIAGRAMS, electron and hole energy motion under various bias, performance characterization parameters (base transport factor, emitter efficiency, various DC current gains, transit times, etc)	
	BJT Small Signal Model BJT SPICE Model BJT Circuits	Jaeger 13.5-13.6 Notes
9	• DC analysis, small signal conversion and AC analysis	
	Metal Oxide Semiconductor Capacitor MOSFET Basics MOSFET Device Physics MOSFET Small Signal Model • How they work!	Pierret 16.2, 16.3 Pierret 17.1-17.2 Jaeger 4.1-4.11, Notes Jaeger 13.7
	• Energy band diagrams under bias, surface potentials, cross sectional views for different bias conditions, threshold voltages, IV-curves and IV equations under various bias, body- source voltage effect.	
10	• Conversion to, calculation of and use of small signal models	

11	 MOSFET SPICE Model Common Emitter Amplifier Common Source Amplifier Common Collector/Drain Amplifier Common Base/Gate Amplifier Differential Amplifier How they work only. No analysis. Single and Multi Stage Amplifiers Amplifier configurations and Design Goals (current, voltage, etc and high/low input and output resistances), transistor amplifier configurations (CC, CD, etc), Gain, Input and output resistances Know DC solutions, conversion to small signal circuit and AC analysis of the small signal circuit 	Notes Notes Jaeger 13.6, 13.10, 13.11 13.9, 13.10, 13.11 14.1, 14.3 Jaeger 14.1, 14.4 15.1-15.3
14	 Operational Amplifier 1st order Op Amp Circuits Non-ideal Op Amps and Op Amp circuits Op Amp Frequency Response and filters Know the basic gain expressions for the different "op-amp building blocks" (inverting, non-inverting, unity gain, summing, etc), understand gain-bandwidth product limitations on frequency response "Fairchild" 741 Op Amp Be able to describe (ONLY DESCRIBE) the function of various sections of the 741 op-amp 	Jaeger 12.1, 12.2 12.3-12.4 12.5 Jaeger 12.6 and notes 16.7

	Logic Gates and Levels Dynamic Response Boolean Algebra NMOS Inverter, and ALL Gates discussed CMOS Inverter, and ALL Gates discussed VOL, VOH, VIL, VIH and noise	Jaeger 6.1, 6.2 6.3 6.4 7.1, 7.2, 7.3, 7.4 8.1, 8.2, 8.3, 8.4, 8.5
	margin calculations or determination from the VTC, time response and characterization parameters (delays etc) Summer Students: I will not ask you to analyze the saturated enhancement load or the depletion load inverter. (This should	
16	help!).	