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Lecture 1

Introduction to Electronic Materials

Reading:
Pierret 1.1, 1.2, 1.4, 2.1-2.6
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*The goal of this course is to teach the
fundamentals of non-linear circuit
elements including diodes, and
transistors (BJT and FET) , how they
are used 1n circuits and real world
applications.

*The course takes an “atoms to op-
amps”’ approach in which you learn
about the fundamentals of electron
movement in semiconductor materials
and develop this basic knowledge into
how we can construct devices from
these materials that can control the
flow of electrons in useful ways.

*We then extend this knowledge to
how these devices can be used to form
circuits that perform useful functions
on electrical signals.
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*The goal of this course is to teach the
fundamentals of non-linear circuit
elements including diodes, and
transistors (BJT and FET) , how they
are used 1n circuits and real world
applications.

*The course takes an “atoms to op-
amps”’ approach in which you learn
about the fundamentals of electron
movement in semiconductor materials
and develop this basic knowledge into
how we can construct devices from
these materials that can control the
flow of electrons in useful ways.

*We then extend this knowledge to
how these devices can be used to form
circuits that perform useful functions
on electrical signals.
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Nakamura, S. et al., “High-power InGaN single-quantum-well-structure blue and violet
light-emitting diodes,” Appl. Phys. Lett 67, 1868 (1995).
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Modern amplifiers consist of extremely small devices ‘&%
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Fgure 1-2  Scanning electron micrograph (SEM) of an IC circa mid 1980s. The visible lines correspond to
metal wires connecting the transistors

Transistors in the above image are only a few microns (um or 1e-6 meters) on a side.

Modern devices have lateral dimensions that are only fractions of a micron (~0.01 pum)
and vertical dimensions that may be only a few atoms tall.
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Modern amplifiers consist of extremely small devices
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Modern devices have lateral dimensions that are only fractions of a micron (~0.01 um)
and vertical dimensions that may be only a few atoms tall.
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Control of Conductivity is the Key to Modern =0
Georgia Tech Electronic Devices &

*Conductivity, o, 1s the ease with which a given material
conducts electricity.

*Ohms Law: V=IR or J=6E where J is current density
and E 1s electric field.

*Metals: High conductivity
Insulators: Low Conductivity

*Semiconductors: Conductivity can be varied by
several orders of magnitude.

oIt 1s the ability to control conductivity that make
semiconductors useful as “current/voltage control
clements”. “Current/Voltage control” is the key to
switches (digital logic including microprocessors etc...),
amplifiers, LEDs, LASERSs, photodetectors, etc...
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Example: Silicon n=1 (2 s), n=2 (2 s and 6 p) and n=3
(2 s and 2 p with 4 unoccupied p states)

*Atoms contain various “orbitals”, “levels” or “shells” of electrons labeled as n=1, 2, 3, 4, etc... or
K, L, M, or N etc... The individual allowed electrons “states are simply allowed positions
(energy and space) within each orbital/level/shell for which an electron can occupy.

*Electrons fill up the levels (fill in the individual states in the levels) from the smallest n shell to
the largest occupying “states” (available orbitals) until that orbital is completely filled then going
on to the next higher orbital.

*The outer most orbital/level/shell is called the “Valence orbital”. This valence orbital si the only
one that participated in the bonding of atoms together to form solids.
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Materials with built in
static dipoles result
from partially or fully
ionic (polar) bonds

Materials free from
built in static

dipoles result from
covalent bonds

*Solids are formed by several methods, including (but not limited to) sharing electrons (covalent bonds) or by
columbic attraction of ions (fully ionic) or partial ionic attraction / partial sharing of electrons (partially ionic)
*The method for which the semiconductor forms, particularly whether or not a fixed static di-pole is constructed
inside the crystal, effects the way the semiconductor interacts with light.

Later we will see that covalent bonds tend toward “indirect bandgap” (defined later) materials whereas polar
bonds (ionic and partially ionic) tend toward “direct bandgap” materials.
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Georgia Tech Valence Electrons

Conduction

Valence g valence st4t E S Electrons (free to
move throughout

electrons can that can also
. m the crystal)
gain energy 0
(thermal, g > X )< 5 \/ 4 ;
electrical,

magnetic or
optical energy)
and break away
from the crystal.

*Only the outermost core levels participate in bonding. We call these “Valance orbits” or “Valence Shells”.

*For metals, the electrons can jump from the valence orbits (outermost core energy levels of the atom) to any position within
the crystal (free to move throughout the crystal) with no “extra energy needed to be supplied”. Thus, “free conducting
electrons are prevalent at room temperature.

For insulators, it is VERY DIFFICULT for the electrons to jump from the valence orbits and requires a huge amount of
energy to “free the electron” from the atomic core. Thus, few conducting electrons exist.

*For semiconductors, the electrons can jump from the valence orbits but does require a small amount of energy to “free the
electron” from the atomic core, thus making it a “SEMI-conductor”.
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Georgia Tech
Valence valence
electrons can that
gain energy
(thermal,
electrical,
magnetic or

mao

o)

and break away

Conduction
" Electrons (free to
move throughout
the crystal)

Energy

Disallowed

Energy Range

known as the

Energy bandgap Energy

from the crystal.

Range of
Valence
Electrons

Discrete Core

N
‘
optical energy) .~
AN

levels

Position x

*Since the electrons in the valance orbitals of a solid can have a range of energies and since the free conducting electrons can
have a range of energies, semiconductor materials are a sub-class of materials distinguished by the existence of a range of
disallowed energies between the energies of the valence electrons (outermost core electrons) and the energies of electrons

free to move throughout the material.

*The energy difference (energy gap or bandgap) between the states in which the electron is bound to the atom and when it is
free to conduct throughout the crystal is related to the bonding strength of the material, it’s density, the degree of ionicity of

the bond, and the chemistry related to the valence of bonding.

*High bond strength materials (diamond, SiC, AIN, GaN etc...) tend to have large energy bandgaps.

*Lower bond strength materials (Si, Ge, InSb, etc...) tend to have smaller energy bandgaps.
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Example: Solar Cells S s
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Why do the
electrons flow
when light 1s
present but not
flow when light
1S not present?

Answer, Energy
Bandgap (very
important
concept).
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*More formally, the energy gap is derived
from the Pauli exclusion principle, where no
two electrons occupying the same space, can
have the same energy. Thus, as atoms are
brought closer towards one another and begin
to bond together, their energy levels must
split into bands of discrete levels so closely
spaced in energy, they can be considered a
continuum of allowed energy.
*Strongly bonded materials tend to have small
interatomic distances between atoms. Thus,
the strongly bonded materials can have larger
energy bandgaps than do weakly bonded
materials.
*One question that repeatedly comes up:
Why does the bandgap form instead of just s
and p orbital mixing? While complex beyond
this explanation, the answer is in the way the
s and p orbitals “hybridize” (mix). As the
mixing becomes “severe”’, they must separate
more fully, leaving a range of energies where
no electron can exist — the energy bandgap.

Classifications of Electronic Materials
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¥ Material Classifications based on Bonding Method R
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Bonds can be classified as metallic, Ionic, Covalent, and van der Waals.
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Ionic Bonding: One atom acquires and holds Covalent Bonding: Atoms share electrons with the ~ Metallic Bonding: Atoms give up electrons to the surrounding
the electron(s) of an adjacent atom. Bonding surrounding atoms. Bonding is moderately weak. regions, forming an “electron cloud”. Bonding is coulombic
is coulombic and strong. but weak due to screening of charge.

Van der Waals Bonding: Neutrally charged molecules form
dipoles which are attracted to other dipoles. Bonding is
extremely weak, but long chains can form.
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b4 Consider the case of the group 4 elements, all**
@ég@ﬁ@ Tech covalently bonded *-

Element Atomic Radius/Lattice Constant Bandgap

(How closely spaced are the atoms?)

C 0.91/3.56 Angstroms 547 eV
S1 1.46/5.43 Angstroms 1.12 eV
Ge 1.52/5.65 Angstroms ~ 0.66 eV = I
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Classifications of Electronic Materials
h Types of Semiconductors: ¥

*Elemental: Silicon or Germanium (Si1 or Ge)

*Compound: Gallium Arsenide (GaAs), Indium Phosphide (InP), Silicon Carbide
(SiC), CdS and many others

*Note that the sum of the valence adds to 8, a complete outer shell. 1.E. 4+4,
3+5 PERIODIC TABLE OF THE ELEMENTS
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Compound Semiconductors: Offer high performance (optical characteristics, higher
frequency, higher power) than elemental semiconductors and greater device design
flexibility due to mixing of materials.

Binary: GaAs, SiC, etc...
Ternary: Al Ga, As, In Ga, N where 0<=x<=1
Quaternary: In,Ga, ,As P, , where 0<=x<=1 and 0<=y<=I

Half the total number of atoms must come from group III (Column III) and the other
half the atoms must come from group V (Column V) (or more precisely, IV/IV | III/V, or
II/VI combinations) leading to the above “reduced semiconductor notation that
emphasizes the equal numbers of anion (higher valence electron group) and cations
(lower valence electron group) in the compound.

Example: Assume a compound semiconductor has 25% “atomic” concentrations of Ga,
25% “atomic’ In and 50% ““atomic” of N. The chemical formula would be:

Gag ,5Ing 5N 5

But the correct reduced semiconductor formula would be:

Ga sIn, sN
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Leneral classihcation of solids based on the degrese of atomic order: (a) amorphous

(b) palycrystalline, and (c¢) crystalline.

Material Classifications based on Crystal Structure

Amorphous Materials

No discernible long range atomic order (no detectable crystal structure). Examples are silicon
dioxide (S10,), amorphous-Si, silicon nitride (Si;N,), and others. Though usually thought of as less perfect than
crystalline materials, this class of materials 1s extremely useful.
Polycrystalline Materials

Material consisting of several “domains” of crystalline material. Each domain can be oriented
differently than other domains. However, within a single domain, the material 1s crystalline. The size of the
domains may range from cubic nanometers to several cubic centimeters. Many semiconductors are
polycrystalline as are most metals.

Crystalline Materials

Crystalline materials are characterized by an atomic symmetry that repeats spatially. The shape of
the unit cell depends on the bonding of the material. The most common unit cell structures are diamond,
zincblende (a derivative of the diamond structure), hexagonal, and rock salt (simple cubic).
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Georgia Tech Crystalline Material”?

The vast majority of crystalline silicon produced is grown by the Czochralski growth
method. In this method, a single crystal seed wafer is brought into contact with a liquid
Silicon charge held in a crucible (typically SiO, but may have a lining of silicon-nitride or
other material). The seed is pulled out of the melt, allowing Si to solidify. The solidified

material bonds to the seed crystal in the same atomic pattern as the seed crystal.

i-_l_‘—:a; Seed crysial
4 I IIII' __ Single erysmal
RF cails -
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Primarily used for II-V1, and III-V semiconductors, special metallic
oxides and metals.

Metal Organic Chemical Vapor Deposition (MOCVD)
*Many materials that we wish to deposit have very low vapor
pressures and thus are difficult to transport via gases.
*One solution is to chemically attach the metal (Ga, Al, Cu,
etc...) to an organic compound that has a very high vapor
pressure. Organic compounds often have very high vapor
pressure (for example, alcohol has a strong odor).
*The organic-metal bond is very weak and can be broken via
thermal means on wafer, depositing the metal with the high
vapor pressure organic being pumped away.
*Care must be taken to insure little of the organic byproducts
are incorporated. Carbon contamination and unintentional
Hydrogen incorporation are sometimes a problem.

Human Hazard: As the human body absorbs organic compounds very easily,
the metal organics are very easily absorbed by humans. Once in the body, the
weak metal-organic bond is easily broken, thus, poisoning the body with
heavy metals that often can not be easily removed by normal bodily functions.
In extreme cases, blood transfusion is the only solution (if caught in time).
“Luckily”, such poisoning is rare as the pyrophoric (flammable in air) nature
of most metal organic means the “victim” is burned severely before he/she can
be contaminated.

Alternative Methods: MOCVD

RS

Figure 14-19 Examples of commaon organomatallics nsed
in MOCVD include {(from 1op 10 bottom

timethylgallium, tetrabutylarsing

and triethylgallum,
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Engineered Energy Behavior in Compound S

Semiconductors

The potential distributions we will use in this class are all possible/common in device structures. Some may
represent “grown in potentials” (quantum wells, etc...) or naturally occurring potentials (parabolic potentials

often occur in nature — lattice vibrations for example) including periodic potentials such as lattice atoms.
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So much for the
introduction.
Now on to the

meat of the
course.



