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Lecture 4

Density of States and Fermi Energy Concepts

Reading:  

(Cont’d) Notes and Anderson2 sections 2.8-2.13
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How do electrons and holes populate the bands?
Density of States Concept

In lower level courses, we state that “Quantum Mechanics” tells us that the 
number of available states in a cubic cm per unit of energy, the density of states, 
is given by:
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How do electrons and holes populate the bands?
Density of States Concept

Thus, the number of states per cubic centimeter between 
energy E’ and E’+dE is

otherwise
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But where does it come from?
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How do electrons and holes populate the bands?
Where Does the Density of States Concept come from?

Approach:  

1. Find the smallest volume of k-space that can hold an electron.  This will turn out to 
be related to the largest volume of real space that can confine the electron.

2. Next assume that the average energy of the free electrons (free to move), the fermi
energy Ef, corresponds to a wave number kf.  This value of kf, defines a volume in 
k-space for which all the electrons must be within. 

3. We then simply take the ratio of the total volume needed to account for the average 
energy of the system to the  smallest volume able to hold an electron ant that tells 
us the number of electrons.

4. From this we can differentiate to get the density of states distribution.
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How do electrons and holes populate the bands?
Derivation of Density of States Concept

First a needed tool:  Consider an electron trapped in an energy well with infinite potential barriers.  
Recall that the reflection coefficient for infinite potential was 1 so the electron can not penetrate the 
barrier.

After Neudeck and Pierret Figure 2.4a
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How do electrons and holes populate the bands?
Derivation of Density of States Concept

What does it mean?

After Neudeck and Pierret Figure 2.4c,d,e
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A standing wave results from 
the requirement that there be a 
node at the barrier edges (i.e. 
BC’s: (0)=(a)=0 ) .  The 
wavelength determines the 

energy.  Many different possible 
“states” can be occupied by the 

electron, each with different 
energies and wavelengths.
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How do electrons and holes populate the bands?
Derivation of Density of States Concept

What does it mean?

After Neudeck and Pierret Figure 2.5
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Recall, a free particle has E ~k2.  
Instead of being continuous in k2, E is 
discrete in n2!  I.e. the energy values 

(and thus, wavelengths/k) of a 
confined electron are quantized (take 
on only certain values).  Note that as 
the dimension of the “energy well” 

increases, the spacing between 
discrete energy levels (and discrete k 

values) reduces.  In the infinite 
crystal, a continuum same as our free 

particle solution is obtained.

Solution for much larger “a”.  Note: 
offset vertically for clarity.
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How do electrons and holes populate the bands?
Derivation of Density of States Concept

We can use this idea of a set of states in a confined space ( 1D well region) to derive the 
number of states in a given volume (volume of our crystal).

Consider the surfaces of a volume of semiconductor to be infinite potential barriers (i.e. 
the electron can not leave the crystal).  Thus, the electron is contained in a 3D box.

After Neudeck and Pierret Figure 4.1 and 4.2
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How do electrons and holes populate the bands?
Derivation of Density of States Concept

Using separation of variables...
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Since k is a constant for a given energy, each of the three terms on the left side must 
individually be equal to a constant.

So this is just 3 equivalent 1D solutions which we have already done...
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How do electrons and holes populate the bands?
Derivation of Density of States Concept

Cont’d...
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combination of nx, ny, nz) 
results in a volume of “k-
space”.  If we add up all 
possible combinations, we 
would have an infinite 
solution.  Thus, we will only 
consider states contained in a 
“fermi-sphere” (see next 
page).
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How do electrons and holes populate the bands?
Derivation of Density of States Concept

Cont’d...
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A “Fermi-Sphere” is 
defined by the 
number of states in 
k-space necessary to 
hold all the electrons 
needed to add up to 
the average energy 
of the crystal 
(known as the fermi 
energy). 

“V” is the physical 
volume of the 
crystal where as all 
other volumes used 
here refer to volume 
in k-space.  Note 
that: Vsingle-state is the 
smallest unit in k-
space. Vsingle-state is 
required to “hold” a 
single electron.
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How do electrons and holes populate the bands?
Derivation of Density of States Concept

Cont’d...
k-space volume of a single state “cube”:     V
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Correction for 
allowing 2 electrons 
per state (+/- spin)

Correction for redundancy in 
counting identical states resulting 

from +/- nx, +/- ny, +/- nz. 
Specifically, sin(-)=sin(+) so the 
state would be the same.  Same as 

counting only the positive octant in 
fermi-sphere.
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How do electrons and holes populate the bands?
Derivation of Density of States Concept

Cont’d...
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How do electrons and holes populate the bands?
Derivation of Density of States Concept

Cont’d...
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Applying to the semiconductor we must recognize m m* and 
since we have only considered kinetic energy (not the potential 
energy) we have E  E-Ec
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Finally, we can define the density of states function:



ECE 3080 - Dr. Alan DoolittleGeorgia Tech

How do electrons and holes populate the bands?
Probability of Occupation (Fermi Function) Concept

Now that we know the number of available states at each energy, how 
do the electrons occupy these states?

We need to know how the electrons are “distributed in energy”.

Again, Quantum Mechanics tells us that the electrons follow the 
“Fermi-distribution function”.
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f(E) is the probability that a state at energy E is occupied

1-f(E) is the probability that a state at energy E is unoccupied
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How do electrons and holes populate the bands?
Probability of Occupation (Fermi Function) Concept

At T=0K, occupancy is “digital”:  No occupation of states above EF and 
complete occupation of states below EF

At T>0K, occupation probability is reduced with increasing energy.

f(E=EF) = 1/2 regardless of temperature.



ECE 3080 - Dr. Alan DoolittleGeorgia Tech

How do electrons and holes populate the bands?
Probability of Occupation (Fermi Function) Concept

At T=0K, occupancy is “digital”:  No occupation of states above EF and 
complete occupation of states below EF

At T>0K, occupation probability is reduced with increasing energy.

f(E=EF) = 1/2 regardless of temperature.

At higher temperatures, higher energy states can be occupied, leaving more 
lower energy states unoccupied (1-f(E)).
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How do electrons and holes populate the bands?
Probability of Occupation (Fermi Function) Concept

For E > (Ef+3kT):

f(E) ~ e-(E-Ef)/kT~0

For E < (Ef-3kT):

f(E) ~ 1-e-(E-Ef)/kT~1

T=10 K, 
kT=0.00086 eV

T=300K, 
kT=0.0259

T=450K, 
kT=0.039
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But where did we get the fermi distribution function?
Probability of Occupation (Fermi Function) Concept

After Neudeck and Pierret Figure 4.5

Consider a system of N total electrons spread between S allowable states.  At each energy, Ei, 
we have Si available states with Ni of these Si states filled.

We assume the electrons are indistinguishable1.

1A simple test as to whether a particle 
is indistinguishable (statistically 
invariant) is when two particles are 
interchanged, did the electronic 
configuration change?

Constraints for electrons:
(1) Each allowed state can accommodate at most, only one electron (neglecting 

spin for the moment)
(2) N=Ni=constant; the total number of electrons is fixed
(3) Etotal=EiNi; the total system energy is fixed
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But where did we get the fermi distribution function?
Probability of Occupation (Fermi Function) Concept
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How many ways, Wi, can we arrange at each energy, Ei, Ni indistinguishable electrons into 
the Si available states.
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When we consider more than one level (i.e. all i’s) the number of ways we can arrange the 
electrons increases as the product of the Wi’s .

If all possible distributions are equally likely, then the probability of obtaining a specific distribution is 
proportional to the number of ways that distribution can be constructed (in statistics, this is the 
distribution with the most (“complexions”).  For example, interchanging the blue and red electron would 
result in two different ways (complexions) of obtaining the same distribution.  The most probable 
distribution is the one that has the most variations that repeat that distribution.  To find that maximum, 
we want to maximize W with respect to Ni’s .  Thus, we will find dW/dNi = 0.  However, to eliminate the 
factorials, we will first take the natural log of the above...

... then we will take d(ln[W])/dNi=0.  Before we do that, we can use Stirling’s Approximation to 
eliminate the factorials.
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But where did we get the fermi distribution function?
Probability of Occupation (Fermi Function) Concept

Using Stirling’s Approximation,     ln(x!) ~ (xln(x) – x)  so that the above becomes,
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Now we can maximize W with respect to Ni’s .  Note that since d(lnW)=dW/W when dW=0, 
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To find the maximum, we set the derivative equal to 0...  
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But where did we get the fermi distribution function?
Probability of Occupation (Fermi Function) Concept

From our original constraints, (2) and (3), we get...
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Using the method of undetermined multipliers (Lagrange multiplier method) we multiply the 
above constraints by constants – and – and add to equation 4 to get ...
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But where did we get the fermi distribution function?
Probability of Occupation (Fermi Function) Concept

This final relationship can be solved for the ratio of filled states, Ni per states available Si  ...
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How do electrons and holes populate the bands?
Probability of Occupation

We now have the density of states describing the density of 
available states versus energy and the probability of a state 
being occupied or empty.  Thus, the density of electrons (or 
holes) occupying the states in energy between E and E+dE 
is:

otherwise

and

and

0

,EE  if   dEf(E)]-(E)[1g

,EE  if    dEf(E)(E)g

vv

cc



Electrons/cm3 in the conduction 
band between Energy E and E+dE

Holes/cm3 in the valence band 
between Energy E and E+dE
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How do electrons and holes populate the bands?
Band Occupation
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How do electrons and holes populate the bands?
Intrinsic Energy (or Intrinsic Level)

…Equal 
numbers of 
electrons and 
holes

Ef is said to equal 
Ei (intrinsic 
energy) when…
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How do electrons and holes populate the bands?
Additional Dopant States

Intrinsic: 
Equal number 
of electrons 
and holes

n-type: more 
electrons than 
holes

p-type: more 
holes than 
electrons


