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Lecture 4

Density of States and Fermi Energy Concepts

Reading:

(Cont’d) Notes and Anderson? sections 2.8-2.13
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How do electrons and holes populate the bands?

Density of States Concept

In lower level courses, we state that “Quantum Mechanics” tells us that the
number of available states in a cubic cm per unit of energy, the density of states,

IS given by: \/
m +/2m (E—-E.)
E)=— d “~ E>E
gc( ) 7Z'2h3 c
m ./2m (E —E
9,(E) = "\/ Z(3V ),EsEV
T°h

3

(Number of States)
unit = cm

eV
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How do electrons and holes populate the bands?
Density of States Concept

g (E) ——o=

[y,

g (E)——w-

Figure 2.14 General energy dependence of g.(E) and g, (E) near the band edges. g_(E) and g, (E)
are the density of states in the conduction and valence bands, respectively.

Thus, the number of states per cubic centimeter between

energy Eand B+dE IS coie it B2 E and,

g,(E’)JE if E’<E, and,

0 otherwise
But where does 1t come from?
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How do electrons and holes populate the bands?

Where Does the Density of States Concept come from?

Approach:

1. Find the smallest volume of k-space that can hold an electron. This will turn out to
be related to the largest volume of real space that can confine the electron.

2. Next assume that the average energy of the free electrons (free to move), the fermi
energy E;, corresponds to a wave number k.. This value of k;, defines a volume in
k-space for which all the electrons must be within.

3. We then simply take the ratio of the total volume needed to account for the average
energy of the system to the smallest volume able to hold an electron ant that tells
us the number of electrons.

4. From this we can differentiate to get the density of states distribution.
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How do electrons and holes populate the bands?
Derivation of Density of States Concept

First a needed tool: Consider an electron trapped in an energy well with infinite potential barriers.
Recall that the reflection coefficient for infinite potential was 1 so the electron can not penetrate the

barrier. 52
(——vz +V]\P:E‘I’ o o0

2m

2 2 v /j

o Ej _E¥Y =0 T T ’

2m Ox

2 U

g Ej +k’¥Y =0

OX

General Solution : P(x) = Asin(kx)+ B cos(kx)
21,2 0 > X
wherek:Z”: 2mEorE:hk 0. a
A h* 2m (b)
Boundary Conditions :
Y(0)=0= B=0
W(a)=0 = Asin(ka)=0 = k=""forn =21, +2,3..
a
2 212
\Pn(X) = An Sln(n—ﬂxj and En = n7 ;—; After Neudeck and Pierret Figure 2.4a
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How do electrons and holes populate the bands?

Derivation of Density of States Concept
What does it mean?

/—\ 2 2372
¥ (%) dEg N7h

A standing wave results from
the requirement that there be a h
node at the barrier edges (i.e. ST =
BC’s: ¥(0)=W(a)=0). The T
wavelength determines the
energy. Many different possible YAVANEN
“states” can be occupied by the i
electron, each with different | e N Vv
energies and wavelengths. i
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Figure 2.4 Particle in an infinitely deep one-dimensional potential well. (a) Spatial
visualization of the particle confinement. (b) The assumed potential energy versus position
dependence. (c) First four allowed energy levels. (d) Wavefunctions and (e) ||* associated with

the first four energy levels. || is proportional to the probability of finding the particle at a given
point in the potential well.
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How do electrons and holes populate the bands?

What does it mean?
Y (X)=A, sin(%j an
a

Solution for much larger “a”. Note:

offset vertically for clarity.

N’

Free
particle@

.7 |

4w, 3w, -2m, -m 0
Th Th 7arﬁ 2 h

my 2wy 3wy Aw
—fl 7fl “ii ﬂﬁ

Derivation of Density of States Concept

Figure 2.5 Allowed infinite-well particle energy versus counterpropagating wave momentum

(discrete points) referenced against the free particle E—(p) relationship.

After Neudeck and Pierret Figure 2.5
Georgia Tech

|

Recall, a free particle has E ~k2.
Instead of being continuous in k?, E is
discrete in n?! 1.e. the energy values

(and thus, wavelengths/k) of a
confined electron are quantized (take
on only certain values). Note that as

the dimension of the “energy well”

Increases, the spacing between
discrete energy levels (and discrete k

values) reduces. In the infinite
crystal, a continuum same as our free
particle solution is obtained.
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How do electrons and holes populate the bands?
Derivation of Density of States Concept

We can use this idea of a set of states in a confined space ( 1D well region) to derive the
number of states in a given volume (volume of our crystal).

Consider the surfaces of a volume of semiconductor to be infinite potential barriers (i.e.
the electron can not leave the crystal). Thus, the electron is contained in a 3D box.

[ 72
2 —
AN B L
(a)
n° oY
— 2 _EY=0
| . F : 2m oOx
Figure 4.1 (a) Visualization of a conduclion(l:and electron moving in a crystal. (b) Idealized a 2 L}’ a 2 L}’ 6 2 ‘P
pseudo-potential well formed by the crystal surfaces and the band edges. . + . . + k 2 L}’ — O
OX oy 0z
-y .for0<x<a0<y<b,0O<z<c
2r 2mE h°k?
’ wherek = — = — OrE=—+r
h 2m

X

Figure 4.2 Envisioned crystal-sized box (infinitely deep three-dimensional potential well)
with x, y, and z dimensions of a, b, and c, respectively.
After Neudeck and Pierret Figure 4.1 and 4.2
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How do electrons and holes populate the bands?
Derivation of Density of States Concept

Using separation of variables...
2 2 2
(1) a?+agj+agj+k2?:0
OX oy 0z
2) Y vy.2)="XY(y)¥,(2)
Inserting (2) into (1) and dividing by (2) we get...
2 82\11 2
1 a LPXZ(X) n 1 yz(y) n 1 a \PZZ(Z) + k2 — O

v.(x) W (y) ¥ W) a

Since Kk 1s a constant for a given energy, each of the three terms on the left side must
Individually be equal to a constant.

2 82‘{’ 2
1 0 LIJXZ(x) iktog, L y2(y) FK2 =0 1 0 ‘I’Zz(z)
Y, (x)  ox Y, (y) oy ¥, (z) oz

where k* =k; +k; +k;

+k’ =0

So this is just 3 equivalent 1D solutions which we have already done...
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How do electrons and holes populate the bands?
Derivation of Density of States Concept

Cont’d... Y(x,y,z) =¥ ()Y, (y)?,(2)
W(x,y,2) = Asin(k,x)sin(k, y )sin(k,z)

Nz n,r /4
where k, = 2=, k, =——, k, =—2—,forn=+1,+£2,43..
a a
242 2 2 2
The(n n n
and E ., = ~+ Z+ .
! 2m | a b C

Each solution (i.e. each
combination of n,, n,, n,)
results in a volume of “k-
space”. If we add up all
possible combinations, we
would have an infinite
solution. Thus, we will only
consider states contained in a

“fermi-sphere” (see next
page).
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How do electrons and holes populate the bands?
Derivation of Density of States Concept

Cont’d... nK?

= — defines a momentum value for the average electron energy E;
m

Volume of a single state “cube”:  V,, .o = (Ej (%j (Zj = (7,_3}

a C V

(1 : 77 4
Volume of a “fermi-sphere”: Vi inere = (g” k?)
A “Fermi-Sphere” is

defined by the
number of states in

“V” Is the physical
volume of the
crystal where as all

K-space necessary to
hold all the electrons
needed to add up to
the average energy
of the crystal
(known as the fermi

energy).

Georgia Tech

other volumes used
here refer to volume
In k-space. Note
that: Vgingie-state 1S the
smallest unit in k-
spacg. Vsingle-state Is
required to “hold” a
single electron.
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How do electrons and holes populate the bands?
Derivation of Density of States Concept

Cont’d... ;

k-space volume of a single state “cube”: Vi gesue = (gj (%j (%j = [’\’/_j
ke - 7 4

K-space volume of a “fermi-sphere”: Vi iqnere = (gn k?}

47zk‘;3

!\Iumber (_)ffilled states 1) (1) (1 (3 j %
in a fermi-sphere: =N~ ZX(EJXG)( j‘ N -

X5 |~ — 2
Vsin glest7 2 i 4 3
\ \ v

Correction for Correction for redundancy in
allowing 2 electrons  counting identical states resulting
per state (+/- spin) from +/- n,, +/-n, +/- n,.

Specifically, sin(-w)=sin(+mr) so the

state would be the same. Same as

counting only the positive octant in
fermi-sphere.
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How do electrons and holes populate the bands?
Derivation of Density of States Concept

Cont’d...
Number of filled states VK 37N )2
- - . = N = > — kf =
In a fermi-sphere: 37 Vv
,( 37°N 7%
h 2

nk; ( Vv j 2(37%n )3
E,=—L = =| E; = f (Bﬂ n)/ where n is the electron density

2m 2m 2m

E; varies in Si from 0 to ~1.1 eV as n varies from 0 to ~5e21cm-3

Thus N VK (¥ )(sz)%
’ 372 372 h?
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How do electrons and holes populate the bands?
Derivation of Density of States Concept

)
3t 3r? h*

Finally, we can define the density of states function:

)
G(E) = # of states per energy per volume = dE s
3( V j(szj%(zmj
2\ 37° \ #° 72
G(E) =

mm\/g

23
7h

Cont’d...

G(E) =

Applying to the semiconductor we must recognize m-> m* and
since we have only considered Kkinetic energy (not the potential
energy) we have E - E-E,

G(E) =M V2 T E.

2+3
Th .
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How do electrons and holes populate the bands?

Probability of Occupation (Fermi Function) Concept

Now that we know the number of available states at each energy, how
do the electrons occupy these states?

We need to know how the electrons are “distributed in energy”.

Again, Quantum Mechanics tells us that the electrons follow the
“Fermi-distribution function”.

f(E)= (El_EF) where k = Boltzman constant, T = Temperature in Kelvin

1+e kT
and E. = Fermi energy (~ average energy in the crystal)

f(E) Is the probability that a state at energy E is occupied

1-f(E) Is the probability that a state at energy E is unoccupied

ECE 3080 - Dr. Alan Doolittle
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How do electrons and holes populate the bands?

Probability of Occupation (Fermi Function) Concept

| I <~ f(E)y=1 - E-EL) kT

F(E)
—

=
3]

E. —3kT E.+3kT
(a)T+=0K (b)T>0K

Figure 2.15 Energy dependence of the Feruu tuncuon. (a) T — 0 K: (b) generalized T > 0 K plot
with the energy coordinate expressed in k7 units.

At T=0K, occupancy is “digital”: No occupation of states above E and
complete occupation of states below E.

At T>0K, occupation probability is reduced with increasing energy.

f(E=E) = 1/2 regardless of temperature.

Georgia Tech
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How do electrons and holes populate the bands?

Probability of Occupation (Fermi Function) Concept

! I <~ f(E)y=1 - E-E) /KT

F(E)
—

=
3]

E, —3kT E,+3kT

(a)T+=0K b)T>0K

Figure 2,15 Energy dependeice of the Feriu tuncuon. (a) T— 0 K: (b) generalized 7 > 0 K plot
with the energy coordinate expressed in k7 units.

At T=0K, occupancy is “digital”: No occupation of states above E and
complete occupation of states below E.

At T>0K, occupation probability is reduced with increasing energy.
f(E=E) = 1/2 regardless of temperature.

At higher temperatures, higher energy states can be occupied, leaving more
lower energy states unoccupied (1-f(E)).
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How do electrons and holes populate the bands?

Probability of Occupation (Fermi Function) Concept

1

f(E)=
1+ e(E_E%T
1.20 3 kT 3 kT=
100 | 3KT| 3KT TZBOOK,
- | TR -
/ E=055ey | <170.0250
__ 080 , T=450K,
LI For E < (E+3KT): kT=0.039
= 0.60
f(E) ~ 1-eEEDKT~] For E > (E-+3KT):
0.40
f(E) ~ e E-ENKT~Q
0.20 / -
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But where did we get the fermi distribution function?
Probability of Occupation (Fermi Function) Concept

Consider a system of N total electrons spread between S allowable states. At each energy, E;
we have S; available states with N; of these S; states filled.

We assume the electrons are indistinguishable?.
Constraints for electrons:

(1) Each allowed state can accommodate at most, only one electron (neglecting
spin for the moment)

(2) N=XN,=constant; the total number of electrons is fixed
(3) Eiww=ZEN;; the total system energy Is fixed

N, electrons

L

S states

[
Et — -~ — ¢ &
§

e s
E, 4 L * L 2
lrl ' L =
LA simple test as to whether a particle
is indistinguishable (statistically Figure 4.5 Envisioned multi-level energy system of a totally arbitrary nature which contains
invariant) is when two particles are §, states and N, electrons at an energy £, (i = 1, 2.3, ++)

interchanged, did the electronic
configuration change?

Georgia Tech After Neudeck and Pierret Figure 4.5 ECE 3080 - Dr. Alan Doolittle




But where did we get the fermi distribution function?
Probability of Occupation (Fermi Function) Concept

How many ways, W,, can we arrange at each energy, E;, N; indistinguishable electrons into

the S; available states. o — o — o F.
S or !
Wi = ' — oo o — o F
(S, =N, )IN,! or
— o o o —E

When we consider more than one level (i.e. all i’s) the number of ways we can arrange the

electrons increases as the product of the W;’s .
- o — — e E.+

Si — o — o ok,

W:HWi:H(Si_Ni)!Ni! — © & o —F

If all possible distributions are equally likely, then the probability of obtaining a specific distribution is
proportional to the number of ways that distribution can be constructed (in statistics, this is the
distribution with the most (“complexions”). For example, interchanging the blue and red electron would
result in two different ways (complexions) of obtaining the same distribution. The most probable
distribution is the one that has the most variations that repeat that distribution. To find that maximum,
we want to maximize W with respect to N;’s . Thus, we will find dW/dNi = 0. However, to eliminate the
factorials, we will first take the natural log of the above...

Zln )—1In([S, = N, ]!)—In(N,!)

... then we will take d(In[W])/dNi:O. Before we do that, we can use Stirling’s Approximation to
eliminate the factorials.
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But where did we get the fermi distribution function?
Probability of Occupation (Fermi Function) Concept

Using Stirling’s Approximation, In(x!) ~ (xIn(x) — x) so that the above becomes,
Zln —In([S, = N, ]!)—In(N,!)
U

=ZSi|n(3i)—/9i/—(Si— )In([s; - N;]) (z/)/ N; In(N p/

Collecting like terms,
- Zsi In(Si)_(Si - Ni)ln([si - Ni])_ N; In(Ni)
Now we can maximize W vlvith respect to N,;’s . Note that since d(InW)=dW/W when dW=0,

d(In[W])=0. d'n(W):Za'”(W):ZU (s, —N,D+1-1In(N;)-1]

dN. 4 N, 4
d In(w ) = Z[m([s N+ // /rde

To find the maximum, we set the derivative equal to O...

(4) dIn(W):Ozzi:{ln(;‘—lﬂdNi

Where we have used 3 [xin(x)]_ In(x)+1

[
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But where did we get the fermi distribution function?
Probability of Occupation (Fermi Function) Concept

From our original constraints, (2) and (3), we get...
>N, =N = > d(N;)=0
ZEiNi =B = ZEid(Ni):O

Using the method of undetermined multipliers (Lagrange multiplier method) we multiply the
above constraints by constants —a. and —3 and add to equation 4 to get ...

Z—ad(Ni)zO

Z:I_,BEid(Ni)ZO
U

dinW)=0= Z{In(&—l}—a—ﬁEi}dNi

which requires that In(;’i —1} —a— pE, =0foralli
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But where did we get the fermi distribution function?
Probability of Occupation (Fermi Function) Concept

This final relationship can be solved for the ratio of filled states, N, per states available S; ...

n| St -a- e -
U
S 1

f E = i =
(5) N, 1+e“/"

in the case of of semiconductors, we have

E. 1
= - and =—
=g AT
S. 1
f(E)=—L=
' (Ei—Ef)
N; l+e KT
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How do electrons and holes populate the bands?
Probability of Occupation

We now have the density of states describing the density of
available states versus energy and the probability of a state
being occupied or empty. Thus, the density of electrons (or

holes) occupying the states in energy between E and E+dE
IS:

Electrons/cm? in the conduction

band between Energy E and E+dE g.(BE)(E)dE 1f E>E. and,

Holes/cm? in the valence band —|.g,(E)[1-f(E)]JdE if E<E, and,
between Energy E and E+dE

0 otherwise
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How do electrons and holes populate the bands?

Band Occupation

Energy band Density Occupancy Carrier
diagram of states factors distributions
E ]

l—f(E):
o

(a) E above midgap

Electrons

E. ! ‘
I
I
|
E, E, ~
Holes
(b) E near midgap
I “4, E, L
! 8.(E) “
! §
— Eg | —— g,(E) |
- E, < i_ E, P—'

(c) Eg below midgap

Figure 2.16 Carrier distributions (not drawn to scale) in the respective bands when the Fermi level
is positioned (a) above midgap, (b) near midgap, and (c) below midgap. Also shown in each case are
coordinated sketches of the energy band diagram, density of states, and the occupancy factors (the
Fermi function and one minus the Fermi function).
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How do electrons and holes populate the bands?

Intrinsic Energy (or Intrinsic Level)

Energy band
diagram

c

—~ Ep

E; is said to equal
E; (intrinsic
energy) when...

Density Occupancy
of states factors

E ]

i * L~ f(E) E

(b) Eg near midgap

= &(E)

—= g (FE)

(c) Eg below midgap

Carrier
distributions

E

— i

8AEM(E)

€
|
L g BN - fEN
EV

Electrons

c

...Equal
numbers of
electrons and
holes

I
|
I
—
|
1
|

E, h
\
Holes

Figure 2.16 Carrier distributions (not drawn to scale) in the respective bands when the Fermi level
is positioned (a) above midgap, (b) near midgap, and (c) below midgap. Also shown in each case are
coordinated sketches of the energy band diagram, density of states, and the occupancy factors (the
Fermi function and one minus the Fermi function).
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How do electrons and holes populate the bands?
Additional Dopant States

Intrinsic:
Equal number
of electrons
and holes

n-type: more
electrons than
holes

p-type: more
holes than
electrons

Georgia Tech
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