As with all of these lecture slides, I am indebted to Dr. Dieter Schroder from Arizona State University for his generous contributions and freely given resources. Most of (>80%) the figures/slides in this lecture came from Dieter. Some of these figures are copyrighted and can be found within the class text, *Semiconductor Device and Materials Characterization*. Every serious microelectronics student should have a copy of this book!
Welcome

- **Welcome to ECE4813 Semiconductor Device and Material Characterization.** This is a most useful course if:
 - You are working with semiconductor materials or devices
 - You are involved with measurements
 - You are looking for a job (answer interview questions)

- It will give you a good overview of most of the characterization techniques in the semiconductor industry:
 - Electrical measurements
 - Optical measurements
 - Electron and ion beam measurements
 - X-ray and probe measurements

- The prerequisite for this course is a previous course in semiconductor device physics, e.g., ECE3040, 3080, or 4751
 - You should be familiar with the basic semiconductor devices: pn junctions, metal-semiconductor devices, and MOS devices
Learning Objectives

- The objective of this course is an understanding of most of the characterization techniques used in the semiconductor industry.
- The major emphasis will be on electrical characterization, since these characterization techniques are most frequently used.
- However, optical techniques, as well as electron beam, ion beam, and X-ray methods will also be discussed.
- Where necessary, device physics will be outlined to understand certain techniques.
Your Responsibility

- It is your responsibility to master the material
- I will assign homework so that you have to apply the course material and reinforce learning
- The textbook is one of the best reference books available, Dr. Dieter Schroder’s text “Semiconductor Device and Materials Characterization”. Every Serious Microelectronics Person should keep a copy of this book. An excellent complement to this book is:
- Occasionally I will provide a paper to read
References

Course Outline

- Electrical Characterization
 - 0. Basic Electrical Measurement Theory, Probe and Instrumentation
 - 1. Resistivity
 - 2. Carrier/Doping Densities
 - 3. Contact Resistance
 - 4. Series Resistance
 - 5. Schottky Barriers
 - 6. MOSFET Channel Length
 - 7. Threshold Voltage
 - 8. Defects, Impurities
 - 9. MOS Capacitors
 - 10. Oxide Charges
 - 11. Interface States
 - 12. Carrier Lifetime
 - 13. Mobility
 - 14. Charge-based Measurements
 - 15. Probe Microscopy
 - 16. Reliability
 - 17. Failure Analysis
Course Outline

Optical Characterization

1. Optical Microscopy
2. Ellipsometry
3. Transmission, Reflection
4. Photoluminescence
5. Emission Microscopy
Course Outline

Physical/Chemical Characterization

- 1. Scanning Electron Microscopy
- 2. Auger Electron Spectroscopy
- 3. Transmission Electron Microscopy
- 4. Voltage Contrast
- 5. Secondary Ion Mass Spectrometry
- 6. Rutherford Backscattering
- 7. X-Ray Fluorescence
- 8. X-Ray Photoelectron Spectroscopy
Approximate Course Schedule

- **Week 1**
 - Introduction, Resistivity

- **Week 2**
 - Sheet Resistance

- **Week 3**
 - Doping Profiling

- **Week 4**
 - Series, Contact Resistance

- **Week 5**
 - Diodes

- **Week 6**
 - Threshold Voltage
 - Channel Length

- **Week 7**
 - Defects

- **Week 8**
 - MOS Charges

- **Week 9**
 - Recombination
 - Mobility

- **Week 10**
 - Charge-based
 - Probes

- **Week 11**
 - Optical
 - Electron Beam

- **Week 12**
 - Ion Beam
 - X-Rays

- **Week 13**
 - Reliability (time permitting or presentations)

- **Week 14**
 - Failure Analysis (time permitting or presentations)
Material/Device Parameters

- Gate Length/Width
- Threshold Voltage
- Contact/Series Resistance
- Oxide Thickness
- Oxide Charges
- Junction Depth
- Doping Profile
- Resistivity
- Impurities
- Defects
- Mobility
- Generation/Recombination
- Lifetime

IBM's POWER 6
7.9x10^8 transistors
4.7 GHz, 2007