

ECE 4813

Semiconductor Device and Material Characterization

Dr. Alan Doolittle School of Electrical and Computer Engineering Georgia Institute of Technology

As with all of these lecture slides, I am indebted to Dr. Dieter Schroder from Arizona State University for his generous contributions and freely given resources. Most of (>80%) the figures/slides in this lecture came from Dieter. Some of these figures are copyrighted and can be found within the class text, Semiconductor Device and Materials Characterization. Every serious microelectronics student should have a copy of this book!

Recombination/Generation

Recombination Mechanisms
Photoconductance Decay
Iron in Silicon
Surface Photovoltage
Generation

Photogeneration

Light with photon energy, $h\nu < Eg$ is not easily absorbed. A convenient expression for the energy of light is $E=1.24/\lambda$ where λ is the wavelength of the light in um.

Light with energy, $h\nu > Eg$ is absorbed with the "unabsorbed" light intensity as a function of depth into the semiconductor is $I(x) = I_o e^{-\alpha x}$

where Io is the initial light intensity, x is distance and α is the absorption coefficient [1/cm].

Absorption

The absorption depth is given by the inverse of the absorption coefficient, or α^{-1} . The absorption depth gives the distance into the material at which the light at that wavelength drops to about 36% of its original intensity (by a factor of 1/e).

Absorption

ECE 4813 Dr. Alan Doolittle

Direct verses Indirect Bandgaps

Figure 3.17 General forms of E-k plots for direct and indirect semiconductors.

Figure 3.18 E-**k** plot visualizations of recombination in direct and indirect semiconductors.

The energy required to liberate an electron from the atom (the energy bandgap) is the same in all "escape directions" (directions that an electron can leave the atom).

Example: Electrons directed toward a neighboring atom would have a high escape energy, while electrons directed toward a channel in the crystal (a hole through the crystal) would have a lower escape energy.

Thus, the energy band diagram is actually a function of momentum. Additionally, both energy and momentum (directed mass motion) must be conserved during any transition.

Direct verses Indirect Bandgaps

Probability of a "direct transition" from valence band to conduction band is high!

Direct Bandgap

Indirect Bandgap

Probability of a "direct transition" from valence band to conduction band is low but if the valence electron is on an atom vibrating in a direction (I.e. has momentum) that lowers the energy required, the probability increases!

FIGURE 1-12

Energy-band diagram with energy vs. momentum for (a) GaAs (direct) and (b) Si (indirect).

Direct verses Indirect Bandgap variations in Light Absorption

Polar materials like GaAs, InP, GaN etc... tend to be better at absorbing light. No lattice vibration is needed to absorb the light=direct gap.

Direct verses Indirect Bandgap variations in Light Absorption

Covalent materials like Si, Ge etc... tend to be poor light absorbers. A lattice vibration is needed to induce a dipole in the crystal before the light can be absorbed=indirect gap.

displaced from the electron cloud. The photon's electric field then resonates (fields are additive) with the atom core - electron cloud dipole and thus is absorbed. () 0 Electron cloud Magnitude of Electric Field of a Photon of light

After the atoms move apart from their equilibrium positions, the core is

3 Recombination and 3 Generation Mechanisms...

Georgia Tech

(a) Band-to-band recombination

(b) R-G center recombination

(d) Band-to-band generation

(e) R-G center generation

(c) Auger recombination

(f) Carrier generation via impact ionization

Recombination and Generation Mechanisms

"Deep State" Impurities

Figure 3.16 Near-midgap energy levels introduced by some common impurities in Si. When an impurity introduces multiple levels, one of the levels tends to dominate in a given semiconductor sample.

PERIODIC TABLE OF THE ELEMENTS

GROUP																	
I.A																	VIII
1,000	ł																2
200 64	ı																E Ha
EE H																	E.He
Hydrogen	IIIA											IIIIO	IVID	VID	VIB	VIIIB	No.
3		1										5 "	-16 111	7 40	48	(Q 10 Helen	10 200
23 Li	T Da											41 1	200: 7		iii o	- T	EE NA
- LI	= Be											÷ 1) in (1200	Via U	Lear T	E NE
URBANA.	Berymun											Service .	Certica	Market Market	Street,	Phone	1000
11mm												13×=		×15===			18 ***
												in a	1 0	F .		70	
.∷ Na	:: IVIQ											· A	11: 2	11.5	- S	in U	Ar
Testing.	Married	IIIA	IVA	Y.A	VIA	VIIA	_	_VIIIA		18	ins	peter	7994	PAGE .	700	200	Person
19 now	20 ===	21 4000	22 419	23 юнч	24 15.86	25 Hami	26 910	27 www	128	1429 au	30 %	Q1 "	×32 m	×33 ×**		35 Ham	36 00
- V	Ca	C'a	a Ť:	= 'V	C.	D. Billion	E Fo	E Ca	TO 1	to the Co	25. To	D. C.	H 0.	- A	e Co	ME O.	W-
- P	Ud	30.	~ II	. V	. 61	C. IAILI	- Le		- N	61	- ZII	- U	dia Ut	AS	ot	C. DI	W MI
Politogram	Colors	Ingrison.	Therium	Posterior .	September 1	(Acceptance)	DOM:	Regarded German	None Market	Sparse Copper	September 1	NAPPLY SHOW	Service .	ASSESS OF	Season.	STATES .	Segment
37	38 449	39 mm/4	0 = 11	41 mm	42 ***	43 m	44 ***	45 mm	46	m447 1000	48 114	49 14	50 TH	e(51 uu	52 =	53	54 mm
E-Rb	T C.	W V	7.	MI MIN	= Mo	# 18k	Ru	= Dh	# P	d= Ar	100 O A	er. 16	an Ci	Ch	To	201	== Va
	. 01	. 1	. 41	··· MD	" IMIO	ea US		1 III	19.5	u n		100	1 OI	1 Or	16		·- VG
Policy	Secreta	Thomas are	Printer	Modeum Notice	Nonposium Montosium	Strategy and the strate	Bulleton	Reader Readers	Patiente	mounts'	Cadmon	Indian.	Te	Name of	Telephone Telephone	Sec. and	Beer .
55 mm	56 1111	57 Daniel 7	2 178.45	73 mm	74 110.81	75 ****	76 .183	77 =0.2	78	M 79 HER	30 202	81 ==	×82 ×	483	84 900	85 ***	86
E- Cs	= Da	1 4	: Lif	To	= WI	T Do	- 00	- T	12 E	March B.	T. Lie	9 T	IN DI	D. D	Po-	A.	
		La.	. 111	- 14	VV	ne	. 03	ar II	100	L. AL	in my		I LI	J D	I PU	- AL	Rn
Cream	- Barriera	(Mathematical Control of the Control	Appendix.	Senten	Temperature Company	Bodroum	Campun	THE PARTY	Patrick	COO STATE	Hereney	Trainers	Last	Rental Control	Pelenium	APPERA	Period
87	88	89 arrest 1	04 m	105 mg	106			•							•		
-		A.	Mean	- Maron	m-p												
.≅ Fr		AC	omfl	- 6000	- 000												
Princeyon.	Mary Reduce	Market I	(Managed National)	promparture	Challenger												

Recombination Mechanisms

- •Band to Band or "direct" (directly across the band) recombination
- •Does not have to be a "direct bandgap" material, but is typically very slow in "indirect bandgap" materials.
- •Basis for light emission devices such as semiconductor LASERs, LEDs, etc...

Photon (single particle of light) or multiple phonons (single quantum of lattice vibration - equivalent to saying thermal energy)

Recombination Mechanisms

Energy loss can result in a Photon (single particle of light) but is more often multiple phonons (single quantum of lattice vibration - equivalent to saying thermal energy)

- •Recombination-Generation (R-G) Center recombination.
- •Also known as Shockley-Read-Hall (SRH) recombination.
- •Two steps: 1.) 1st carrier is "trapped" (localized) at an unintentional (or intentional) defect/impurity. 2.) 2nd carrier (opposite type) is attracted to the R-G center and annihilates the 1st carrier.
- •Useful for creating "fast switching" devices by quickly "killing off" ehp's.

Recombination Mechanisms

- •Auger "pronounced O-jay" recombination.
- •Requires 3 particles.
- •Two steps: 1.) 1^{st} carrier and 2^{nd} carrier of same type collide instantly annihilating the electron hole pair (1^{st} and 3^{rd} carrier). The energy lost in the annihilation process is given to the 2^{nd} carrier. 2.) 2^{nd} carrier gives off a series of phonons until it's energy returns to equilibrium energy ($E \sim = E_c$) This process is known as thermalization.

Generation Mechanisms

- •Band to Band or "direct" (directly across the band) generation
- •Does not have to be a "direct bandgap" material.
- •Mechanism that results in n_i
- •Basis for light absorption devices such as semiconductor photodetectors, solar cells, etc...

Generation Mechanisms

- •Recombination-Generation (R-G) Center generation.
- •Two steps: 1.) A bonding electron is "trapped" (localized) at an unintentional defect/impurity generating a hole in the valence band. 2.) This trapped electron is then promoted to the conduction band resulting in a new ehp.
- •Almost always detrimental to electronic devices. AVOID IF POSSIBLE!

Generation Mechanisms

- •Impact Ionization generation.
- •Requires 3 particles and, typically, high electric fields (steeply bent bands).
- •1st carrier is accelerated by high electric fields (or may very rarely gain enough kinetic energy on it's own) and collides with a lattice atom, knocking out a bonding electron creating an ehp.
- •If the origin is a high electric field, this process can lead to rapid carrier multiplication known as "avalanching". Can be very useful for very sensitive (but noisy) photodiodes.
- •Sets an upper limit on practical electric fields that can be tolerated in many transistors.

Photogeneration

Each Photon with energy greater than Eg can result in one electron hole pair. Thus, we can say,

$$\frac{\partial n}{\partial t}\Big|_{Light} = \frac{\partial p}{\partial t}\Big|_{Light} = G_L(x,\lambda) \quad \text{where } G_L(x,\lambda) = G_{LO}e^{-\alpha x} \quad \#(cm^3 - Sec)$$

If α is small (near bandgap light), the generation profile can be approximately constant.

If α is large (light with energy>> bandgap), the generation profile can be approximated as at the surface.

Important Nomenclature

carrier concentrations in the material under analysis when equilib n_0, p_0 rium conditions prevail.

carrier concentrations in the material under arbitrary conditions. n, p

deviations in the carrier concentrations from their equilibrium values. $\Delta n \equiv n - n_0 \dots$ $\Delta p \equiv p - p_0$

 Δn and Δp can be both positive and negative, where a positive deviation corresponds to a carrier excess and a negative deviation corre-

sponds to a carrier deficit.

number of R-G centers/em³. N_{T}

$$n = \Delta n + n_o$$
 and $p = \Delta p + p_o$

In Non-equilibrium, np does not equal n_i²

Low Level Injection

 $\Delta p = \Delta n << n_0$ and $n \sim n_0$ in n-type material

 $\Delta p = \Delta n \ll p_0$ and $p \sim p_0$ in p-type material

Carrier Concentrations after a "Perturbation"

After the carrier concentrations are perturbed by some stimulus (leftmost case) and the stimulus is removed (center case) the material relaxes back toward it's equilibrium carrier concentrations.

Consider a case when the hole concentration in an n-type sample is not in equilibrium, i.e., pn does NOT equal n_i²

$$\frac{\partial p}{\partial t}\Big|_{thermal \ R-G} = -\frac{\Delta p}{\tau_p}$$
 where $\tau_p = \frac{1}{c_p N_T}$

where τ_p is the min ority carrier lifetime c_p is a proportionality cons tan t

 N_T is the "trap" concentration

- •The minority carrier lifetime is the average time a minority carrier can survive in a large ensemble of majority carriers.
- •If Δp is negative \rightarrow Generation or an increase in carriers with time.
- •If Δp is positive \rightarrow Recombination or a decrease in carriers with time.
- •Either way the system "tries to reach equilibrium"
- •The rate of relaxation depends on how far away from equilibrium we are.

Likewise when the electron concentration in an p-type sample is not in equilibrium, i.e., pn does NOT equal n_i^2

$$\frac{\partial n}{\partial t}\Big|_{thermal \ R-G} = -\frac{\Delta n}{\tau_n}$$
 where $\tau_n = \frac{1}{c_n N_T}$

where τ_n is the min ority carrier lifetime

 c_n is a different proportionality cons tan t

 N_T is the "trap" concentration

More generally for any doping or injection case:

$$\frac{\partial n}{\partial t}\Big|_{thermal \quad R-G} = \frac{\partial p}{\partial t}\Big|_{thermal \quad R-G} = \frac{n_i^2 - np}{\tau_p(n+n_1) + \tau_n(p+p_1)}$$

where...

$$n_1 \equiv n_i e^{(E_T - E_i)/kT}$$
 and $p_1 \equiv n_i e^{(E_i - E_T)/kT}$

Same

unit as

above

Example: After a long time on, a light is switched off

$$\frac{\partial n}{\partial t} = -\frac{\Delta n}{\tau_n} \qquad has \ a \ solution$$

$$n(t) = n_o + \Delta n_o e^{-\left(\frac{t}{\tau_n}\right)} \quad where \ \Delta n_o = initial \ excess \ electron \ concentration$$

Time

Carrier Relaxation can also be achieved through Direct recombination

Given: $\Delta n = \Delta p$, $n = n_o + \Delta n$, $p = p_o + \Delta p$

Low Level Injection ==> $\Delta n << N_a$ and High Level Injection ==> $\Delta n >> N_a$

- •Recombination Rate, $R = Bnp [\#/cm^3 sec.]$ (depends on number of electrons and holes present)
- In Thermal Equilibrium,

 $np = n_i^2$ where n_i^2 is the n-p product due to thermal generation (intrinsic generation)

Recombination rate, $R = B n_i^2 = G$, Generation Rate where B is a constant

Under Illumination (Non-thermal equilibrium), $np > n_i^2$

Net Recombination Rate,
$$-dn/dt = R - G = B(np - n_i^2)$$

but, $\Delta n = \Delta p$
 $-dn/dt = B(np - n_i^2)$
 $= B((n_o + \Delta n)(p_o + \Delta p) - n_i^2)$
 $= B(n_o p_o - n_i^2 + \Delta p n_o + \Delta n p_o + \Delta n \Delta p)$
 $= B\Delta n(0 + n_o + p_o + \Delta n)$
 $= B\Delta n(n_o + p_o + \Delta n)$

Thus, using our lifetime definition,

$$\begin{aligned} -dn/dt &= -\Delta n/~\tau_{direct} \\ \tau_{direct} &= 1/(B(n_o + p_o + \Delta n)) \end{aligned}$$

Carrier Relaxation can also be achieved through Direct recombination

Special cases:

Low Level Injection: Δn<<majority carrier density

$$\tau_{direct} = 1/(B(n_o + p_o))$$

and if the material is n-type:

$$\tau_{direct} = 1/(Bn_o)$$

or p-type:

$$\tau_{direct} = 1/(Bp_o)$$

High level injection: $\Delta n \gg$ majority carrier density

$$\tau_{direct}\!\!=\!\!1/\!(B\Delta n)$$

Carrier Relaxation can also be achieved through "Auger" recombination

Derive the equation for the lifetime, τ_{Auger} , due to Auger recombination as was done for Band-to-Band.

Auger (pronounced "O-jay") recombination involves 3 particles: either (2 electrons and 1 hole) or (2 holes and 1 electron). As such, the net recombination rate is described by:

$$R - G = -\frac{dn}{dt} = C_n n (np - n_i^2) + C_p p (np - n_i^2)$$

where C_n and C_p are the Auger coefficients for electrons and holes respectively with units cm⁶/Second.

In general, all these terms are important (especially in low bandgap materials where $p\sim n$) but let us examine each component separately by assuming an n-type material where n>p and assuming that $C_p\sim C_n$ (a very good assumption).

$$R - G = -\frac{dn}{dt} = C_n n (np - n_i^2)$$

$$R - G = -\frac{dn}{dt} = C_n (n_o + \Delta n) \left((n_o + \Delta n)(p_o + \Delta p) - n_i^2 \right)$$

$$R - G = -\frac{dn}{dt} = C_n (n_o + \Delta n) \left(n_o p_o - n_i^2 + \Delta p n_o + \Delta n p_o + \Delta n \Delta p \right)$$

$$R - G = -\frac{dn}{dt} = C_n (n_o + \Delta n) (\Delta p n_o + \Delta n p_o + \Delta n \Delta p)$$

But since $\Delta n = \Delta p$,

$$R - G = -\frac{dn}{dt} = C_n(n_o + \Delta n)(n_o + p_o + \Delta n)\Delta n$$

$$R - G = -\frac{dn}{dt} = C_n[(n_o n_o + n_o p_o + n_o \Delta n) + (\Delta n n_o + \Delta n p_o + \Delta n \Delta n)]\Delta n$$

Carrier Relaxation can also be achieved through "Auger" recombination

At this point, we could add the other equivalent expression for 2holes/1electrons to get a generalized case:

$$R - G = -\frac{dn}{dt} = C_n[(n_o n_o + n_o p_o + n_o \Delta n) + (\Delta n n_o + \Delta n p_o + \Delta n \Delta n)]\Delta n + C_p[(p_o p_o + n_o p_o + p_o \Delta n) + (\Delta n p_o + \Delta n n_o + \Delta n \Delta n)]\Delta n$$

Thus, by definition:

$$-\frac{dn}{dt} = \frac{\Delta n}{\tau_{Auger}}$$

$$\tau_{Auger}^{-1} = C_n[(n_o n_o + n_o p_o + n_o \Delta n) + (\Delta n n_o + \Delta n p_o + \Delta n \Delta n)] + C_p[(p_o p_o + n_o p_o + p_o \Delta n) + (\Delta n p_o + \Delta n n_o + \Delta n \Delta n)]$$

But for our assumed n-type material:

$$\tau_{Auger}^{-1} = C_n[(n_o n_o + n_o p_o + n_o \Delta n) + (\Delta n n_o + \Delta n p_o + \Delta n \Delta n)]$$

Note that this third order process (3 particles) follows the concentration squared (hence the unit of C as cm⁶/second) whereas the second order process (2 particles) for band-to-band followed a the concentration linearly. For our n-type case, we can further simplify this equation since $n_o >> p_o$,

$$\begin{split} \tau_{Auger}^{-1} &= C_n[(n_o n_o + n_o \Delta n) + (\Delta n n_o + \Delta n \Delta n)] \\ \tau_{Auger}^{-1} &= C_n(n_o + \Delta n)^2 \\ \tau_{Auger}^{-1} &= C_n n^2 \end{split}$$

SRH Electron Capture and Emission

How many electrons are available for capture $c_e = v_{th,e} \ \sigma_n \ n \ N_t \ (1-f(E))$ Capture cross section: Effective size of the defect. Units of area Thermal velocity: How fast the electrons

SRH Electron Capture and Emission

Ec

How many holes are available for capture

Rate

Number of filled defect sites

Capture cross section: Effective

 $c_{p} = v_{th,p} \, \sigma_{p} \, p \, N_{t} \, f(E)$

size of the defect. Units of area Hole Capture

Thermal velocity: How fast the holes are moving

Ec

Hole Capture

Number of empty defect sites

$$e_{p} = e_{h} N_{t} (1 - f(E))$$
 where $e_{h} = v_{th,p} \sigma_{p} N_{v} e^{-(Et-Ev)/KT}$

Hole Emission Rate

SRH Electron Capture and Emission

Recombination:

electron capture / hole capture

hole capture / electron capture

Generation:

hole emission / electron emission

electron emission / hole emission

Recycling of carriers into bands:

hole capture / hole emission

electron capture / electron emission

Recombination Lifetime

The recombination lifetime is a combination of all three recombination processes

$$\tau_r = \frac{1}{\tau_{SRH}^{-1} + \tau_{rad}^{-1} + \tau_{Auger}^{-1}}$$

Electron and Hole Recombination at Surfaces

aia Tech

Surfaces (or interfaces) are considered "massive planar defects" due to the enormous numbers of broken bonds and thus large numbers of trap states.

Surfaces are characterized by a "Surface recombination velocity" which is the rate at which carriers are flowing toward that surface to recombine. Metals have large/infinite surface recombination velocities (s_e or $s_h > 1$ million cm/Sec) where as well "passivated" surfaces may have s_e or s_h <100 cm/Sec.

Effect of Surfaces can be averaged with the effect of minority carrier lifetime by:

$$\frac{1}{\tau_{\textit{effective}}} = \frac{1}{\tau_{\textit{SRH}}} + \frac{1}{\tau_{\textit{Direct}}} + \frac{1}{\tau_{\textit{Auger}}} + \frac{2s}{d}$$

Minority Carrier profile under illumination due to high surface recombination velocities

Surface Recombination

In addition to bulk recombination, there is also surface recombination which has a similar form as SRH for the bulk, *

$$R_{s} = \frac{\sigma_{ns}\sigma_{ps}V_{th}N_{it}(p_{s}n_{s} - n_{i}^{2})}{\sigma_{ns}(n_{s} + n_{1s}) + \sigma_{ps}(p_{s} + p_{1s})}$$

$$= \frac{s_{n}s_{p}(p_{s}n_{s} - n_{i}^{2})}{s_{n}(n_{s} + n_{1s}) + s_{p}(p_{s} + p_{1s})}$$

The surface recombination rate, R_s, can be expressed as a surface recombination velocity,

$$s_r = \frac{R_s}{\Delta n_s}$$
 $s_r = \frac{s_n s_\rho (p_{0s} + n_{0s} + \Delta n_s)}{s_n (n_{0s} + n_{1s} + \Delta n_s) + s_\rho (p_{0s} + p_{1s} + \Delta p_s)}$

$$\mathbf{s}_n = \sigma_{ns} \mathbf{v}_{th} \mathbf{N}_{it}; \quad \mathbf{s}_p = \sigma_{ps} \mathbf{v}_{th} \mathbf{N}_{it}$$

Photoconductance Decay (PCD)

- Photoconductance decay is a common transient recombination lifetime measurement techniques
 - Laser pulses create electron-hole pairs (ehp)
 - The ehp change the conductivity
 - The time-varying conductivity is detected with microwaves (or RF)

Microwave Implementation

 $\sigma = \mathbf{q}(\mu_n \mathbf{n} + \mu_p \mathbf{p})$

RF Bridge Implementation

ECE 4813 Dr. Alan Doolittle

Photoconductance Decay

 The analysis involves solutions of the minority carrier diffusion equation subject to boundary conditions on the two surfaces

$$\frac{\partial \Delta n(x,t)}{\partial t} = D \frac{\partial^2 \Delta n(x,t)}{\partial x^2} - \frac{\Delta n(x,t)}{\tau_B} + G(x,t)$$

$$\frac{\partial \Delta n(x,t)}{\partial x} \big|_{x=0} = s_{r1} \frac{\Delta n(0,t)}{D}$$

$$\frac{\partial \Delta n(x,t)}{\partial x} \big|_{x=d} = -s_{r2} \frac{\Delta n(d,t)}{D}$$

$$\Delta n(t) = \Delta n(0) \exp\left(\frac{-t}{\tau_{eff}}\right)$$

Photoconductance Decay

 The effective lifetime is determined by bulk and surface recombination

$$\Delta n(t) = \Delta n(0) \exp\left(\frac{-t}{\tau_{eff}}\right)$$

$$\frac{1}{\tau_{eff}} = \frac{1}{\tau_{B}} + D\beta_{1}^{2} \quad \text{where } \tan\left(\frac{\beta_{1}d}{2}\right) = \frac{2s_{r}}{\beta_{1}D}$$

For low s,:

$$\frac{1}{\tau_{eff}} = \frac{1}{\tau_B} + \frac{2s_r}{d}$$

For high s_r:

$$\frac{1}{\tau_{\text{eff}}} = \frac{1}{\tau_{B}} + \frac{\pi^{2} D}{d^{2}}$$

Photoconductance Decay

Images courtesy of Semilab

- Iron in boron-doped p-type Si forms iron-boron pairs, Fe-B
- When heated to 200°C/ 5 min or illuminated with bright light, Fe-B ⇒ interstitial iron, Fe_i, and substitutional boron, B_s
- Fe_i ⇒ Fe-B at room temperature after ~ 24 hours
- The recombination properties of Fe-B differ from those of Fe_i
- Measuring the recombination lifetime before and after dissociation yields the iron density

$$N_{Fe}(cm^{-3}) = 2.8 \times 10^{12} \left(\frac{1}{\tau_{r,after}} - \frac{1}{\tau_{r,before}} \right)$$

 $(\tau \text{ in } \mu s)$

Iron in Silicon

Images courtesy of U. Kumpf, AMECON GmbH

- Flame-fusion quartz, from crystalline quartz in hydrogen-oxygen flame
- Electric-fusion quartz, from electrically heated crucible melt

M. Hill, D. Hellmann and M. Rother, "Quartzglass Components and Heavy Metal Contamination," *Solid State Technol.* **37**, 49-52, March 1994.

Surface Photovoltage

- The sample is treated with a chemical to induce surface charge creating a depletion region at the surface.
- The sample is illuminated with light of wavelength λ and penetration depth $1/\alpha$
- λ is varied and hence 1/α also changes
- Plot $1/V_{SPV}$ versus $1/\alpha$ at constant light Φ
- Diffusion length L_n is the intercept; $L_n = (D_n \tau_r)^{1/2}$
- Use intense light to change Fe-B into Fe_i and B_s

$$N_{Fe} = 1.05 \times 10^{16} \left(\frac{1}{L_{n,final}^2} - \frac{1}{L_{n,initial}^2} \right) cm^{-3}$$

Surface Photovoltage (SPV)

 Surface photovoltage is a common steady-state minority carrier diffusion length measurement technique

Iron in Silicon - SPV

Courtesy of P. Edelman and J. Lagowski, Semiconductor Diagnostics, Inc.

Requires either a p-n, Schottky, electrolyte or mercury probe rectifying junction

Absorption coefficient

Diffusion Length in p-side (2nd can be neglected if heavily doped or if not existent).

- L_n can be extracted from plots similar to that for SPV provided one varies the intensity to maintain a constant J_{ssscc}
- Current is easier to measure but requires a junction

Luminescence

Luminescence is the emission of light due to:

- Incandescence: energy supplied by heat
- Photoluminescence: energy supplied by light
- Fluorescence: energy supplied by ultraviolet light
- Chemiluminescence: energy supplied by chemical reactions
- Bioluminescence: energy supplied by chemical reactions in living beings
- Electroluminescence: energy supplied by electric current/voltage
- Cathodoluminescence: energy supplied by electron beams.
- Radioluminescence: energy supplied by nuclear radiation
- Phosphorescence: delayed luminescence or "afterglow"
- Triboluminescence: energy supplied by mechanical action
- Thermoluminescence: energy supplied by heat

Photoluminescence

- Incident laser creates electron-hole pairs (ehp)
- When the ehp recombine, they emit light

 Quantification is difficult (due to light intensity, reflection and absorption differences) unless an intrinsic spectral line can be

1150

Si

How Does PL Work And How Can It Be Used?

- Carrier generation depth
 - Wavelength ⇒ depth information
- Recombination
 - Shockley-Read-Hall (impurities) ⇒ impurity information
 - Auger (high carrier densities) ⇒ doping density information
 - Surface (surface states, impurities) ⇒ surface information
 - Radiative (light emission) ⇒ detection mechanism

This is what we want!

Depth Dependent PL Signals

Iron In Si by PL And PCD

Time Resolved PL

- Signal at a constant wavelength is monitored as a function of time after an excitation light pulse is applied
- Wavelength (depth) and time information can both be obtained

Generation

Under reverse bias, generation dominates over recombination

Bulk

<u>Surface</u>

$$G_{S} = -R_{S} = \frac{s_{n}s_{p}n_{i}^{2}}{s_{p}n_{1s} + s_{n}p_{1s}} = s_{g}n_{i}$$

Silicon Purity

How much iron is required to contaminate the world's Si supply to 5x10¹⁰ cm⁻³

- Name and explain the three bulk and one surface recombination mechanisms
- What is the difference between recombination and generation lifetimes?
- How does photoconductance decay work?
- How does surface photovoltage work?
- What is special about iron in p-Si?
- How does surface recombination affect the effective recombination lifetime?
- What can be obtained from a Photolumenescence measurement?