Lecture 7

Lithography and Pattern Transfer

Reading:
Chapter 7
Lithography and Photoresists

Used for Pattern transfer into oxides, metals, semiconductors.

3 types of Photoresists (PR):

1.) Positive: PR pattern is same as mask. On exposure to light, light degrades the polymers (described in more detail later) resulting in the photoresist being more soluble in developers. The PR can be removed in inexpensive solvents such as acetone.

2.) Negative: PR pattern is the inverse of the mask. On exposure to light, light polymerizes the rubbers in the photoresist to strengthen it’s resistance to dissolution in the developer. The resist has to be removed in special stripping chemicals. These resists tend to be extremely moisture sensitive.

3.) Combination: Same photoresist can be used for both negative and positive pattern transfer. Can be removed in inexpensive solvents.
Lithography and Photoresists

Photoresists are used in a process typical of this process: Dehydration Bake, Apply Adhesion Promoter, Apply Resist, Soft bake, Exposure with Mask, Post Exposure Bake, Develop, Optional Processing. For example:

1.) Dehydration in an oven at ~120 degrees C for as long as 30 minutes

2.) Spin coat (verbally explain) adhesion promoter such as hexamethyldisilane (HMDS)

3.) Spin coat resist

4.) Soft bake to partially solidify PR (85-95 degrees C for 1 to 30 minutes depending on the resist)

5.) Expose to few hundred mJoules/cm² of high energy light

6.) (Optional) Hard bake, removes more solvent (~110-150 C)

7.) Develop: weak regions of PR dissolved

8.) Additional Hard bake or chemical treatment to harden PR for aggressive processes such as Ion implantation or Plasma etching

More details at the Gt microelectronics teaching lab web page: http://www.ece.gatech.edu/research/labs/ve/
Applying Photoresists and Related Compounds

1) Wafer is held on chuck via vacuum and slowly spun.
 - PR dispenser nozzle
 - Wafer
 - Chuck
 - Spindle
 - To vacuum pump

2) Photoresist is dispensed
 - PR dispenser nozzle
 - Wafer
 - Chuck
 - Spindle
 - To vacuum pump

3) Photoresist is stopped and sucked back to prevent dripping.
 - PR dispenser nozzle
 - Wafer
 - Chuck
 - Spindle
 - To vacuum pump

4) Wafer is spun faster to achieve the desired thickness and uniformity.
 - PR dispenser nozzle
 - Wafer
 - Chuck
 - Spindle
 - To vacuum pump
1.) Etching Processes: open windows in oxides for diffusion, masks for ion implantation, etching, metal contact to the semiconductor, or interconnect.

2.) Lift off Processes: Metalization (more common in III-V).

Uses of Lithography:

- Spin PR
- Lithography
- Etch Layer using PR as Mask
- Remove PR

- Spin PR
- Lithography
- Evaporate Metal
- Lift Off excess metal with PR

[Diagram showing the processes and layers]
Issues with Photolithography

1.) **Resolution**: How small of features can you make. (Current production state of the art is \(~0.007\) um)

2.) **Registration**: Can you repeatability align one layer to another. (\(~1/3\) of resolution)

3.) **Throughput**: Can these be done in a cost effective time. 50-1000 wafers an hour (\(~200-300\) is state of the art), down to 1 chip per hour for prototype or military chips.

At this point, CMOS example will be given in class using supplemental lecture 7b:
Photolithography Systems

1. **Contact**: Resist is in contact with the mask: 1:1 magnification

 - **Advantages**: Inexpensive equipment (\sim50,000-150,000), moderately high resolution (~0.5 um or better but limited by resist thickness- 0.1 um demonstrated)
 - **Disadvantages**: Contact with the mask degrades the mask (pinholes and scratches are created on the metal-oxide layers of the mask, particles or dirt are directly imaged in the wafer, Wafer bowing or local loss of planarization results in non-uniform resolution due to mask-wafer gap variations, and no magnification

2. **Proximity**: Resist is almost, but not in contact with the mask: 1:1 magnification

 - **Advantages**: Inexpensive equipment, low resolution (~1-2 um or slightly better)
 - **Disadvantages**: Diffraction effects limit accuracy of pattern transfer. Less repeatable than contact methods, no magnification

3. **Projection**: Mask image is projected a distance from the mask and de-magnified to a smaller image: 1:4 -1:10 magnification

 - **Advantages**: Can be very high resolution (~0.007 um or slightly better), No mask contact results in almost no mask wear (high production compatible), mask defects or particles on mask are reduced in size on the wafer.
 - **Disadvantages**: Extremely expensive and complicated equipment, diffraction effects limit accuracy of pattern transfer.

Figure 5-3 Three basic methods of wafer exposure.
Issues with Photolithography

1.) Resolution:

Resolution is “diffraction limited”. As patterns approach the same order of magnitude as the wavelength of light, one must be concerned with the wavelike nature of light.

Case 1: Square Mask in the Near Field (Mask close to Wafer)

The mask can be placed in close proximity or directly in contact with the wafer (contact or proximity printing). We define this case, known as the near field or Fresnel diffraction limit, by the expression:

$$W^2 >> \lambda \sqrt{g^2 + r^2}$$

$$\Delta W = W \frac{g}{D}$$

Figure 7.6 Typical near field (Fresnel) diffraction pattern.

Definitions used for Resolution Equations

Figure 7.5 Huygen’s principle applied to the optical system shown in Figure 7.4. A point source is used to expose an aperture in a dark field mask.
(Contd…) Square Mask in the Near Field (Mask close to Wafer)

Effect of increasing mask-wafer gap spacing

Assuming:\n\[\frac{W^2}{\lambda} < g < \lambda \]

Then the minimum feature size that can be resolved is:
\[W_{\text{min}} \approx \sqrt{k\lambda} \cdot g \]

where \(k \) is a constant, normally close to 1, that depends on the photoresist and the development procedures.

Example: For a \(k=1 \), and \(\lambda=0.365 \) (I-line)

<table>
<thead>
<tr>
<th>(W_{\text{min}})</th>
<th>(g) (gap)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.7 (\text{um})</td>
<td>20 (\text{um})</td>
</tr>
<tr>
<td>1.9 (\text{um})</td>
<td>10 (\text{um})</td>
</tr>
<tr>
<td>1.35 (\text{um})</td>
<td>5 (\text{um})</td>
</tr>
<tr>
<td>0.6 (\text{um})</td>
<td>1 (\text{um})</td>
</tr>
</tbody>
</table>
Case 2: Square Mask in the Far Field (Mask far away from the wafer)

The mask can be placed far away from the wafer (projection printing used in stepping and scanning systems). We define this case, known as the far field or Fraunhofer diffraction limit, by the expression:

\[W^2 << \lambda \sqrt{g^2 + r^2} \]

The intensity on the wafer (areal image) is then as shown.

Resolution, \(R \), (Diameter of the central maximum) is:

\[R = \frac{1.22 f \lambda}{d} \]

Resolution, \(R \), (Diameter of the central maximum) is:

\[R = \frac{1.22 f \lambda}{d} \]

How Quickly the side lobes die off determines the printable pitch

Figure 5-6 Qualitative example of a small aperture being imaged.

Figure 7-7 Typical far field (Fraunhofer) image.

\(d = \) Diameter of focusing optics

\(f = \) Focal length of focusing optics

From geometry,

\[d = 2[n(f \sin(\alpha))] \text{ where } n \text{ is the index of refraction (normally 1 for air but now } n.1 \text{ is used in “immersion” lithography), and } \alpha \text{ is the angle to the edge of the focusing optics} \]
Square Mask in the Far Field (Mask far away from the wafer)

\[
R = \frac{1.22 f \lambda}{d} = \frac{1.22 f \lambda}{n(2f \sin(\alpha))} = \frac{0.61 \lambda}{n \sin(\alpha)} = \frac{0.61 \lambda}{NA}
\]

Where NA is the numerical aperture of the focusing optics. The Numerical Aperture describes the focusing strength of the projection system:

However, all our derivation is based on a “point source” which is not ever possible, thus, we can generalize using a constant \(k \) (normally \(\sim 0.75 \)) the result as:

\[
W_{\text{min}} \approx k \frac{\lambda}{NA}
\]

Briefly discuss immersion lithography.
Depth of Focus:

While increasing the NA will result in smaller patterns, it also affects the depth of focus (range of lengths for which the image is in focus on the wafer).

\[\text{Depth of focus} = \sigma = \frac{\lambda}{NA^2} \]

Large NA results in small Depth of Focus
Small NA results in large Depth of Focus

Variations in surface heights of a processed wafer must be less than the optical Depth of Focus. Thus, for high resolution lithography the surface must be planar (flat).

High resolution (small depth of field) lithography can focus on point A or B but not A and B simultaneously.
Comparison of Areal Images of the Three types of Photolithography Systems

Figure 5-15 Aerial images produced by the three types of optical lithography tools. The mask and wafer would be in hard contact in a contact aligner, separated by a gap g in a proximity aligner, and far apart with an intervening focusing lens in a projection system.
Consider a diffraction grating instead of a single square aperture, the Fraunhofer limited (far field) intensity pattern (non-normalized intensity in W/cm²) is shown. We can define a measure of the contrast in the areal image (image on the wafer) by the Modulation Transfer Function,

\[
 MTF = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}}
\]

MTF is a measure of an exposure tool's ability to modulate the intensity of light at the wafer surface and decreases with decreasing diffraction grating period (more destructive interference).
The MTF uses the power density (W/cm² or (J/sec)/cm²). The resist responds to the total amount of energy absorbed. Thus, we need to define the Dose, with units of energy density (mJ/cm²), as the Intensity (or power density) times the exposure time.

• We can also define D_{100} as the minimum dose for which the photoresist will completely dissolve when developed.
• We define D_0 as the maximum energy density for which the photoresist will not dissolve at all when developed.
• Between these values, the photoresist will partially dissolve.

In many cases, we want very high contrast, producing sharp lines. In very few cases, improving step coverage for deposited layers, or even in an image reversal process, one may desire moderately low contrast.
Typically mercury (Hg)- Xenon (Xe) vapor bulbs are used as a light source in visible (>420 nm) and ultraviolet (>250-300 nm and <420 nm) lithography equipment. Commonly used molecular transition lines in Hg-Xe bulbs are 436 nm (g-line), 365 (i-line), 290, 280, 265 and 248 nm. All other wavelengths are filtered out.

Lasers are used to increase resolution, and decrease the optical complexity for deep ultraviolet (DUV) lithography systems. Excited dimer (Excimer or Exiplex) pulsed lasers are typically used. These are powerful, extremely expensive to purchase and maintain, optically noisy lasers.
Steppers and Scanners can have a reduction built in. Thus, a 5X reduction means to produce 0.5 um lines, the mask must have 2.5 um features. Also, dirt or particles on the mask are much smaller on the wafer. Most importantly, defects are consistent from exposure to exposure. Steppers can easily incorporate lasers instead of Hg-vapor bulbs, increasing resolution dramatically.

Where are we today:
Pentium II was a 0.25 um technology and was produced exclusively with excimer steppers.
Current and future generations of microprocessors will be 0.18, 0.15 and 0.13 um technology.
See Predictions from Solid State Technology Table I.

Update: 2017 node is actually 0.007 um

Read sections 7.7, 7.8, 7.9 in your text.
Updated Status: Lithography

Optical Bulb Stepper

Reticle
Illumin. source
Lens

Excimer Laser Stepper

DUV Light
248-157 nm
Reticle (mask contains circuit pattern)
Lens
Pattern repeated onto wafer
Wafer (with photoresist)

Optical Laser Stepper

(Reprinted with permission of ASML Corporate Communications)
Updated Status: Lithography

Technology Options at Technology Nodes

- 90 nm
 - 193 nm
 - 193 nm + LFD
 - 193 nm immersion
 - PEL

- 65 nm
 - 193 nm immersion + LFD
 - EUV
 - ML2, 157 nm immersion, PEL

- 45 nm
 - EUV
 - 193 nm immersion + LFD
 - 157 nm immersion + LFD, ML2

- 32 nm
 - EUV
 - Innovative 157 nm or 193 immersion
 - ML2
 - Imprint, innovative technology

- 22 nm
 - 193 nm + LFD
 - Innovative technology
 - ML2, EUV + RET, imprint

- 16 nm
 - 193 nm + LFD

Legend:
- Research required
- Development underway
- Qualification pre-production
Updated Status: Lithography

Advanced EUV Stepper