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Lecture 5

Vector Spaces and Linear Algebra:

Vector Representation of Wave States in Hilbert

Spaces

Reading:
Notes and Brennan Chapter 1.6-1.7
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Fundamental Expansion Postulate

Basis vectors (a minimal set of orthogonal vectors that uniquely and
completely describes all of vector space) can be added together to construct
any point in the vector space.

Example: the unit vectors in Cartesian coordinates.

Similarly, we can think of orthogonal sets of wave functions as vectors and
treat them similarly to simple vectors — i.e. add linear combinations of basis
wave function sets to result in any arbitrary wave function within the wave
space.

Lee Algebra is often used here: Lee was a pure mathematician who described
his Linear Algebra as “finally a mathematical formulation that the physicists
cannot corrupt with a useful purpose [paraphrase — not direct quote]”.
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Fundamental Expansion Postulate
Consider the case of two orthogonal wave functions (two states):

If 'Y and ¥  are orthogonal, then

T\P,:\Pndv =0,

However, in general, if ¥ and
Y are orthogonal, then nothing
can be said about

I LPI:; é:op LIJn dV : K 5mn ’\/4)(,;9 \k?:i)%

because ¢,, may rotate ‘¥’ into a
projection of ¥ . However, if ¥
is an Eigenfunction of &, then

qu;gop\yndv =1 T‘P;\Pndv =10,
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Fundamental Expansion Postulate

A basis set is a minimum set of functions that completely spans the space (i.e.
all regions in space can be derived from linear combinations of the basis set).

Example: Fourier Series or unit vectors X, y, z.

Since Eigenfunctions of a Hermitian operator having unequal Eigenvalues are
mutually orthogonal if they are complete, they must form a basis set.

The Fundamental Expansion Postulate states that every physical observable
can be represented by a Hermitian operator with a complete basis set of

Eigenfunctions, ¥, ,V, , '¥,, ... , ¥, and every physical state ¥ can be expanded
as a linear combination of Eigenstates as

Y=> Y,

Where each coefficient is given as:

c, = _f LI’i*{lja’v

\
This is sort of like a dot-product operation with a unit vector

in normal vector Linear algebra: For example: if you want
to know the yt" coefficient of the vector r=2x+3y+7z, where

' . _ X, ¥, and z are unit vectors (basis vectors) simply take rey
See discussion Brennan p. 42-46 for details
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Fundamental Expansion Postulate
Proof:

Let A,, be a Hermitian operator with Eigenfunctions, ¥,,¥, , ¥;, ... , ¥, and
Eigenvalues A, A,, A;, ... A,. The arbitrary physical state ¥ can be expanded
as a linear combination of Eigenstates as,

¥=>cY

And the expectation value, <A> is then given by,

(4)=[ ¥4, Wdv

Therefore...

See discussion Brennan p. 42-46 for details
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Proof (cont’d):

Now using the
Eigenvalue —

relationship

Fundamental Expansion Postulate

A, wav

(A) =

(A)= (Zci*‘Pi*jAop(Zci‘Pijdv
(A) =

(A

(c1 Y, +c, ¥, +... ¢, ¥, )AOP(CI‘P1 +c,¥, +.. cn‘Pn)dV

> (cl*‘Pl* + cz*‘Pz* + ... cI;k‘I’n*XclAl‘I’1 +c, AW, +.. CnAn‘I’n)dv

but the c.s are just numbers and since
[ wdv =3,
all " cross terms cancel" , leading to

(A) = Z(Ai | ‘Pi*‘I’idv)

1

and since Y 1s normalized,
(A)=

Thus, <A> is a weighted average of the

Eigenvalues,

See discussion Brennan p. 42-46 for details
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Fundamental Expansion Postulate
Proof (cont’d):

But how do we find the |¢|* ‘s? Given:

Multiply by ¥’ > PP =D PP,
Integrate over all > | Tj*TdV = I(Z Ci‘Pj*‘Pi]dV
space i
W Pdv =) o,
(¥ "Pdv =c,

Before a measurement, the particle can be in an unidentifiable state \¥ (but is
made up of a linear combination of Eigenstates). However, once measured, the
particle is in a known Eigenstate, ¥, ,with known measurable variable A.. The
term “collapsing into known state ', “ is often used. The |c,|> ‘s are the
probability of collapse (probability that a measurement corresponding to
Hermitian operator A, of the particle in arbitrary state t’ will result in an

observable A)).

See discussion Brennan p. 42-46 for details
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Hilbert Space: Linear Vector Spaces using “Vector Functions”

Since we can treat orthogonal wave functions as vectors, we can define many
linear algebra functions that apply to wave functions as well.

Distribitive Addition: ¥_+¥ =¥ +¥,_ and ¥ _+(¥ +¥,)=(¥ +¥_)+¥,
Scalor Multiplication: p(A¥_)=@A)¥,  and A(¥ +W¥, )=A¥, +A¥,
Existance of a Null State: ¥_+Y¥Y =Y

Linear Indepencence of all States : If all A, # 0 then Z/Ii‘l’i # 0 foralli
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Linear Vector Spaces
State projections onto each other:

While basis vectors are orthogonal, any two generalized states (each made up
of linear combinations of basis states) may not be. Thus, we can define an
“overlap operation” similar to a dot product in traditional linear algebra.
Similarly to the dot product, this operation returns a scalar representing how
much overlap is between the two states:

d= T‘P;‘I’ndv

a= [l X, v

d= j(zajwa(ZngdV
—oo\ i j

d=> ZajbjTtP;"tdev
i ] ~0

but again if we used orthogonal basis functions, ; and ¥';,
4=3 Taivg,
i j
d= Z:a’:bi
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Linear Vector Spaces
What is an Operator in the Wave space formulism?

An operator merely maps one wave state to another with both initial and final
states being in the Hilbert space and thus, both initial and final states can be
represented by linear combinations of the basis vector states. Formally this is
simply:

LPnew — gop\{’old

Thus an operator merely changes the state from one state to another.
Consider the simple “5 times” operator: The new state is mathematically
different for the old state by a factor of 5.
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Matrix Methods in Quantum Mechanics

The Fundamental Expansion Postulate can be rewritten in matrix form.
Every physical observable can be represented by a Hermitian operator with a
complete basis set of Eigenfunctions, ¥,,%¥, , '¥;, ... , ¥, and every physical
state ¥ can be expanded as a linear combination of Eigenstates as

¥=>cY,

_Tl_

Y,

T:[Cl C, €3 - Cn] Y,

v

ci:j‘Pi*‘Pdv -
/

Integrals like these that we have been using all semester
are often called matrix elements — now you can see why.

See discussion Brennan section 1.7 for details
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Matrix Methods in Quantum Mechanics

Thus, every generalized state can be represented by a vector, ¢, which are the
coefficients of the basis wave states (coefficients of the basis vectors).

Since an operator merely changes from one state to another, the operator then
can be represented as a matrix as well. Consider:

Y, = Z:ci‘l’i and ¥, = Zai‘l’i

P, P,
Y, Y,
lPc:[cl C, €3 - Cn] W, | and \Pa:[al a, az; - an] Y,
_an_ _an_

butsince ¥, =& ¥,

a, ‘211 &.:12 2;13 éln C

a, En &pn Eon || €2

a; |=|&; : K C;
_an_ _&nl E.’nn__cn_

See discussion Brennan section 1.7 for details
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Matrix Methods in Quantum Mechanics
But how do we find the individual matrix elements ¢;;> Consider our two states
Y. and ¥;: Y, =& W, where ¥ =Y c¥ and ¥, =) a?,

Applying the operator, ¥, =¢,, Z c,V.
Multiplying both sides by ‘Pj* and integrating over all space,
[wie v =3 [We, (e v

Now subtituting in for ¥ _, and only working on the left hand side,

J.\Pj*Zai‘Pidv = Z J.\Pj*fop (ci‘Pi)dv
Z Tai\Pj*\Pidv = Z ]?\Pj*é:op (e, Jav
Zaiéy - Z Jq]j*gop (c,\¥ )av

a; = Z ]?\Ijj*gop (Ci\Pi)dv

1 o

But the right hand side can be rewritten as,

a; = Zﬁ‘l’j*fop‘l’idv}i or

1

See discussion Brennan o
. : )
section 1.7 for details a, = Z &,¢;, where £, = J Y&, Wdv

i
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Matrix Methods in Quantum Mechanics

The two state vectors can thus be related by a transformation (operator)
matrix made up of matrix elements &;;.

Y, = Z:ci‘Pi and ¥, = Zai‘{’i

P, b4
Y, Y,
\Pc:[cl C, €3 - Cn] W, | and \Pa:[al a az; - an] Y,
_‘Pn_ _‘Pn_

butsince ¥, =&, YW,

a, S Cn &y o Gy | ¢ Thus, many Quantum
a, &, &, - E, lc, Mechanics problems
a, |=|&, . c, reduce down to

calculating integrals for
each matrix element and

a c
2] Lo S L0 ] then solving
NUMERICAL matrix
a = Zgﬁci, where &, = j ‘Pj* £,Wdv equations.

See discussion Brennan
section 1.7 for details
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Matrix Methods in Quantum Mechanics
Consider what happens to the operator matrix if the basis wave set are

Eigenfunctions of the operator. " "
Y =[c, ¢, ¢, - ¢c] |¥| and ¥,=[a, a, a, - a,] |,
a ] [&y & & o En o ‘{, \P

a, En En o Son || ©2

a, |=&, C;

12, ] |Su Son JLCn

where &, = [ W&, W .dv

7y

Ep= [ W AW dv =2 [W]¥dv =10,
- = Thus, using a

o L Eigenfunction basis set
a &1 =4) 0 0 0 C results in a diagonal
a, 0 (E,=4,) 0 c, matrix whose elements
a, |= 0 : (g33 — 13) 0 c, are the Eigenvalues.
: : ' ; ; Working in reverse, if
a 0 € =2)|ec. we can diagonalize the
T - matrix, we can find all

the Eigenvalues along
the diagonal.

See discussion Brennan
section 1.7 for details
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Matrix Methods in Quantum Mechanics

Consider the case of the Schrodinger Equation (described in detail in the next
lecture). This equation can be written as an Eigenvalue equation of the form:

HY=EY

where H is the Hamiltonian operator (total energy) and E is the energy
Eigenvalue.

Considering ¥ to be a vector wave state, we can rewrite the Schrodinger
Equation as,

HY c¥,=E) c¥,

Multiplying by ‘Pj* and integrating over all space,

T\Pj*HZ c,\W.dv = T‘Pj*Ez c,'\W.dv
Z c; T ‘P;H‘Pidv = Z Ec, T ‘I’j*‘l’l.dv

defining H , = J. ‘P;H‘I’ .dv and subtracting the right side from the left, this becomes,

ZciHl.j _ZECi5U =0

See discussion Brennan Z C; (H i E 51‘] ) =0

section 1.7 for details '

1

Georgia Tech ECE 6451 - Dr. Alan Doolittle




Matrix Methods in Quantum Mechanics
Continued...

HZCZ.‘PZ. = EZCZ.‘PZ.

Multiplying by ‘Pj* and integrating over all space,

T Y HY c,Vdv= T Y EY ¢ ¥dv

Z c, ]ZLPJ.*H‘PZ.dv = ZEci T‘I’;‘I’idv

1

defining H , = I LI’J.*H‘I’ .dv and subtracting the right side from the left, this becomes,

> eH, - Ecd,; =0
Zci(HU _E5zi): 0

or in matrix form,

(Hll E) H,, H,; H,, ¢

H,, (sz _E) : H,, C,

H;, (H33 - E) H,, c; |=0
L Hnl (Hrm _E)__Cn_

See discussion Brennan
section 1.7 for details
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Matrix Methods in Quantum Mechanics
Example: Consider the system whose Hamiltonian matrix elements,

H,= T\PJ.*H‘Pidv

-1 2 -1

evaluate to: 3 -1 0
H =
0 -1 3

What are the possible results when the energy is measured?

Writing the (H-E)¥Y=0 => (H-E)(c,'¥,+¢,¥,+¢;'¥;)=0 matrix and solving, we
get:

B-E) -1 0 e
-1 (2-E) -1 {czio
0 -1 (3-E)|c

which has a nontrivial solution for :

B-E) -1 0
DET| -1 (2-E) -1 |=0
See discussion Brennan 0 -1 (3 -k )

section 1.7 for details
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Matrix Methods in Quantum Mechanics

What are the possible results when the energy is measured?

See discussion Brennan
section 1.7 for details

Georgia Tech

B-E) -1 0 Te
-1 (2-E) -1 |¢|=0
0 -1 (3-E)|c

which has a nontrivial solution for :

B-E) -1 0
DET| -1 (2-E) -1 |=0
0 -1 (3-E)

Expanding by minors,
(2-E) -1 -1 0 -1 0
(3-E)‘ —(—1)‘ ‘+o‘ ‘
-1 3-E) -1 3-E) |2-E) -1
(B-E)E*-5E+4)=0
B-E)YI-E)Y4-E)=0

E=3,1,or4
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Matrix Methods in Quantum Mechanics

What are the corresponding Eigenvectors W¥,, Wy, and ¥, for each of these
energy Eigenvalues? For E=1,

3-1) -1 0 e
-1 (2-1) -1 |¢,|=0
0 -1 (3-1)| ¢

which has a solution of :
2¢,—c, +0c; =0
—c +c,—¢c; =0

Oc, —c, +2¢;, =0

Solving these 3 equations and 3 unknowns yields,

\Pl
Clearly these Eigenvectors are
Y, =11 2 1||¥Y
.= %] not normalized.
LP3
Similarly for E=3 and E=4,

lI’1 \Ill
See discussion Brennan Y, = [1 0 - 1] Y, Yo = [1 -1 1] ¥,
section 1.7 for details V7 7]
3 3
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Matrix Methods in Quantum Mechanics
If the ACTUAL state of the particle is described by the vector,
\Pl
=2 3 -2]|¥
lIJ3

Y

actua.

What is the probability of each Eigen-energy (the only possible measurable
values) being measured?

After we normalize the states we have previously found and the state above, we
must evaluate the overlap of these states. Mathematically this is either,

c—J“P‘P dv

Actual

as described previously or:

For i=A, B and C or equivalently in matrix form,

:LPAO\P ZLPB‘LP C(j:kPC.\PActual

Actual Actual

See discussion Brennan
section 1.7 for details
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Matrix Methods in Quantum Mechanics
Normalizing each of the relevant vectors we get,

¥, 1 ¥, 1 ¥, 1 ¥,
:’J ‘PA:—6[1 2 1]{\1@} ‘PB:—2[1 0 1][\?2} ‘Pczﬁ[l -1 1]{1'2]

¥ P, ¥,

3

1
\Pactual = T7 [2 3 o 2]

Cao=VroW i C=YpoW¥,uu Cc=Yco¥

Ca Cs Cc

1 1 1 1
:ﬁ[l 0 _1]°ﬁ[2 3 -2 =$[1 -1 ﬂ'ﬁ[z 3 -2
V6 V8 V3

= Cp =—— C = —
N N ANV

1 1
=%[1 2 1].ﬁ[2 3 -2]

Ca

Thus, the probability of measuring ...
..Energy=1is 6/17
..Energy=3is 8/17
..Energy=4is 3/17

See discussion Brennan
section 1.7 for details
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