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Lecture 5

Vector Spaces and Linear Algebra:

Vector Representation of Wave States in Hilbert 
Spaces

Reading:  

Notes and Brennan Chapter 1.6-1.7
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Basis vectors (a minimal set of orthogonal vectors that uniquely and 
completely describes all of vector space) can be added together to construct 
any point in the vector space.

Example: the unit vectors in Cartesian coordinates.

Similarly, we can think of orthogonal sets of wave functions as vectors and 
treat them similarly to simple vectors – i.e. add linear combinations of basis 
wave function sets to result in any arbitrary wave function within the wave 
space.

Lee Algebra is often used here:  Lee was a pure mathematician who described 
his Linear Algebra as “finally a mathematical formulation that the physicists 
cannot corrupt with a useful purpose [paraphrase – not direct quote]”.

Fundamental Expansion Postulate
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Consider the case of two orthogonal wave functions (two states):

If Ψn and Ψm are orthogonal, then

mnnm dv δ=ΨΨ∫
∞

∞−

*

However, in general, if Ψn and 
Ψm are orthogonal, then nothing 
can be said about 

mnnopm Kdv δξ
?

* =ΨΨ∫
∞

∞−

because ξop may rotate Ψn into a 
projection of Ψm .  However, if Ψn
is an Eigenfunction of ξop then

mnnnMnnopM dvdv δλλξ ∫∫
∞

∞−

∞

∞−

=ΨΨ=ΨΨ **

Fundamental Expansion Postulate
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A basis set is a minimum set of functions that completely spans the space (i.e. 
all regions in space can be derived from linear combinations of the basis set).

Example:  Fourier Series or unit vectors x, y, z.

Since Eigenfunctions of a Hermitian operator having unequal Eigenvalues are 
mutually orthogonal if they are complete, they must form a basis set.

The Fundamental Expansion Postulate states that every physical observable 
can be represented by a Hermitian operator with a complete basis set of 
Eigenfunctions, Ψ1 ,Ψ2 , Ψ3, ... , Ψn and every physical state Ψ can be expanded 
as a linear combination of Eigenstates as 

Where each coefficient is given as:

Fundamental Expansion Postulate

∑ Ψ=Ψ
i

iic

See discussion Brennan p. 42-46 for details

∫ ΨΨ= dvc ii
*

This is sort of like a dot-product operation with a unit vector 
in normal vector Linear algebra:  For example:  if you want 
to know the yth coefficient of the vector r=2x+3y+7z, where 
x, y, and z are unit vectors (basis vectors) simply take r•y
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Proof:

Let Aop be a Hermitian operator with Eigenfunctions, Ψ1 ,Ψ2 , Ψ3, ... , Ψn and 
Eigenvalues A1, A2, A3, ... An.  The arbitrary physical state Ψ can be expanded 
as a linear combination of Eigenstates as,

And the expectation value, <A> is then given by,

Therefore...

Fundamental Expansion Postulate

∑ Ψ=Ψ
i

iic

See discussion Brennan p. 42-46 for details

∫ ΨΨ= dvAA op
*
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Proof (cont’d):
Fundamental Expansion Postulate

See discussion Brennan p. 42-46 for details
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Proof (cont’d):

But how do we find the |cj|2 ‘s?  Given:

Before a measurement, the particle can be in an unidentifiable state Ψ (but is 
made up of a linear combination of Eigenstates).  However, once measured, the 
particle is in a known Eigenstate, Ψi ,with known measurable variable Ai.  The 
term “collapsing into known state Ψi “ is often used.  The |ci|2 ‘s are the 
probability of collapse (probability that a measurement corresponding to 
Hermitian operator Aop of the particle in arbitrary state Ψ will result in an 
observable Ai).  

Fundamental Expansion Postulate

See discussion Brennan p. 42-46 for details
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Since we can treat orthogonal wave functions as vectors, we can define many 
linear algebra functions that apply to wave functions as well.

Hilbert Space: Linear Vector Spaces using “Vector Functions”
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State projections onto each other:

While basis vectors are orthogonal, any two generalized states (each made up 
of linear combinations of basis states) may not be.  Thus, we can define an 
“overlap operation” similar to a dot product in traditional linear algebra.  
Similarly to the dot product, this operation returns a scalar representing how 
much overlap is between the two states:

Linear Vector Spaces
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What is an Operator in the Wave space formulism?

An operator merely maps one wave state to another with both initial and final 
states being in the Hilbert space and thus, both initial and final states can be 
represented by linear combinations of the basis vector states.  Formally this is 
simply:

Thus an operator merely changes the state from one state to another.  
Consider the simple “5 times” operator:  The new state is mathematically 
different for the old state by a factor of 5.

Linear Vector Spaces

oldopnew ΨΨ ξ=
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The Fundamental Expansion Postulate can be rewritten in matrix form.   
Every physical observable can be represented by a Hermitian operator with a 
complete basis set of Eigenfunctions, Ψ1 , Ψ2 , Ψ3, ... , Ψn and every physical 
state Ψ can be expanded as a linear combination of Eigenstates as 

Matrix Methods in Quantum Mechanics
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See discussion Brennan section 1.7 for details

∫ ΨΨ= dvc ii
*

Integrals like these that we have been using all semester 
are often called matrix elements – now you can see why.
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Thus, every generalized state can be represented by a vector, c, which are the 
coefficients of the basis wave states (coefficients of the basis vectors).

Since an operator merely changes from one state to another, the operator then 
can be represented as a matrix as well.  Consider:

Matrix Methods in Quantum Mechanics
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See discussion Brennan section 1.7 for details
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But how do we find the individual matrix elements ξij? Consider our two states 
Ψc and Ψa:

Matrix Methods in Quantum Mechanics
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section 1.7 for details
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The two state vectors can thus be related by a transformation (operator) 
matrix made up of matrix elements ξij.

Matrix Methods in Quantum Mechanics

See discussion Brennan 
section 1.7 for details
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Consider what happens to the operator matrix if the basis wave set are 
Eigenfunctions of the operator.

Matrix Methods in Quantum Mechanics

See discussion Brennan 
section 1.7 for details
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Consider the case of the Schrödinger Equation (described in detail in the next 
lecture).  This equation can be written as an Eigenvalue equation of the form:

HΨ=EΨ

where H is the Hamiltonian operator (total energy) and E is the energy 
Eigenvalue.

Considering Ψ to be a vector wave state, we can rewrite the Schrödinger 
Equation as, 

Matrix Methods in Quantum Mechanics

See discussion Brennan 
section 1.7 for details
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Continued...
Matrix Methods in Quantum Mechanics

See discussion Brennan 
section 1.7 for details
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Example:  Consider the system whose Hamiltonian matrix elements,

evaluate to:

What are the possible results when the energy is measured?

Writing the (H-E)Ψ=0 => (H-E)(c1Ψ1+c2Ψ2+c3Ψ3)=0 matrix and solving, we 
get:

Matrix Methods in Quantum Mechanics

See discussion Brennan 
section 1.7 for details
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What are the possible results when the energy is measured?
Matrix Methods in Quantum Mechanics

See discussion Brennan 
section 1.7 for details
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What are the corresponding Eigenvectors ΨA, ΨB, and ΨC, for each of these 
energy Eigenvalues?  For E=1,

Similarly for E=3 and E=4, 

Matrix Methods in Quantum Mechanics

See discussion Brennan 
section 1.7 for details
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Clearly these Eigenvectors are 
not normalized.
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If the ACTUAL state of the particle is described by the vector,

What is the probability of each Eigen-energy (the only possible measurable 
values) being measured?

After we normalize the states we have previously found and the state above, we 
must evaluate the overlap of these states.  Mathematically this is either,

as described previously or:

For i=A, B and C or equivalently in matrix form,

Matrix Methods in Quantum Mechanics

See discussion Brennan 
section 1.7 for details
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Normalizing each of the relevant vectors we get,

Thus, the probability of measuring ...

...Energy=1 is 6/17

...Energy=3 is 8/17

...Energy=4 is 3/17

Matrix Methods in Quantum Mechanics

See discussion Brennan 
section 1.7 for details
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