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Our starting point: equilibrium
In equilibrium statistical mechanics, by definition, 

our particles distributed themselves in a way 
as to maximize degeneracies -- whether in 
energy, position, etc.

From this, one can derive (energy) occupational 
density functions for different types of 
particles (e.g. fermions, bosons)

What does this tell us about the real-space 
location of our particles? Almost nothing.



Particle Location
Thus far in our discussions of statistical particle behavior, we have 

focused on describing the energy state occupational density 
functions of quantum particles. 

Why have we not derived the space occupational density 
function?

Because it is a constant everywhere in the space-of-interest.

As has been said, in statistical mechanics, an isolated system in 
equilibrium is equi-likely to be in any of its available states. 
Spatially, this means that any combinations of particles can 
be anywhere in the isolated system (assuming a bulk 
material for simplicity).

But what about in nonequilibrium?



Nonequilibrium Conditions
Under nonequilibrium conditions, mechanisms exist, which 

promote the likelihood of particles in the system into some 
states and diminish the likelihood of others.

So what might these complex and destined-to-be-obscure 
mechanisms be?

Let’s look at an example…



Let us imagine a large balloon filled 
with a gas



Let’s assume that…
I. There are no external forces or fields (e.g. 

gravity, fields, etc.)
II. The gas is monatomic and uncharged
III. The gas is dilute and collisions are negligible
IV. The balloon is huge and we can simply 

disregard what happens when atoms come 
into contact at the boundary.

V. The systems’ statistical properties are in 
steady-state e.g. the mean momentum is 0

These first 5 assumptions place our system in 
equilibrium.

As a sixth assumption, I’ll propose that the gas 
molecules are like people in an elevator: as 
far away from each other as possible (in fact, 
we can use circular logic to demonstrate why 
this is so -- but we’ll get to that in a few 
minutes)



Now what if we incorporated an 
external force?

Let’s apply gravity -- turn on the gravity switch.
t = 0 t = some time later



Our system is now at another 
steady-state…

Now without pounding down the 
walls of our previous assumptions 
(e.g. negligible collisions), you can 
understand that the gravity [being 
the only force] has caused the 
particles to collect at the bottom of 
the rigid, balloon.

Now, what would happen if we 
flipped the gravity switch back off?



Particle Diffusion
Without the external force, the atoms will diffuse away from 
each other (an area of high concentration) to the other side of 
the balloon (area of low concentration).

After some time, one could guess that 
the particles will return to a state of 
equilibrium.

It is this diffusion, which creates an 
“equilibrium” in which the atoms are 
most likely to be as-far-from each other 
as possible [on average] -- circular logic.

In this scenario, this may be true, but not 
every system will settle at equilibrium 
e.g. superconductive systems.



One more mechanism: collisions
Previously, we assumed that collisions could be neglected. 

Clearly in this example, the gas atoms would have at least 
collided with each other and the balloon as they collected at 
the bottom of the balloon and when they diffused away (these 
are not the only times atoms would have collided, but these 
are intuitively simple situations)

So the the mechanisms that alter 
state probabilities were quite 
intuitive and comprehensible!

Unfortunately, this doesn’t make 
them simple to mathematically 
handle.



Boltzmann’s Equation
We will begin our mathematical treatment of nonequilibrium 
statistical mechanics by defining a probability distribution 
function, f(x,k,t).

In a system with no particle collisions, particle generations, or 
particle absorptions*; the probability distribution function is 
conserved with respect to time:

N.B.: particle collisions and generation (or recombination) 
occurrences fall into an umbrella category, “scattering 
events”.

df (x,k,t)
dt

= 0

*: In the uncharged gas-in-vaccuum thought experiment previously, there were 
only three mechanisms, but in materials such as semiconductors, the total free 
carriers can be adjusted through generation and recombination events



How do we know the distribution is 
conserved?

Let’s assume that we have a one particle system, which can 
only be influenced by external fields and diffusion. Let’s place 
this one particle within a phase-space volume
at time t.

dxdydzdkxdkydkz

Over a span of time, dt, this one particle is influenced by an 
external field and/or diffusion and moves to another phase-
space volume, dx'dy 'dz'dkx 'dky 'dkz '



How do we know the distribution is 
conserved?

dV ≡ dxdydzdvxdvydvz = dx'dy 'dz'dvx 'dvy 'dvz '

These two phase-space volumes can be shown (via the 6-
dimensional Jacobian) to be equal to each other:

Since the particle was not lost (absorbed) and a 2nd particle 
was not generated, the probability function is not 
fundamentally different -- it’s coordinates are just shifted (it’s 
just classic Newtonian mechanics):
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For a rigorous proof of this, reference:
D. Ter Haar, Elements of Statistical Mechanics (3rd), 
Butterworth-Heinemann, Oxford (1995), pp 11-19.



Now to incorporate “scattering 
events”

As previously mentioned, “scattering events” are any events 
which break the conservation of the probability distribution 
function with respect to time such as generation, atomic 
collisions, and absorption.

As a mental exercise, imagine we have our 1-particle system 
again, and the particle is absorbed into the medium (think of a 
free electron recombining with a hole) -- assuming there is no 
possibility of another particle being created, our probability 
distribution is now null.



Now to incorporate “scattering 
events”

Including “scattering events” into our conservation of probability 
distribution function:

df
dt

= 0
df
dt

=
∂f
∂t Scattering

Events

This continuity equation including scattering, is the actual 
Boltzmann Equation, but in this form it appears quite 
unhelpful



Expanding the derivative….
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In which ‘F’ is an external force acting on the system.

This can also be simply converted from having a k-component 
velocity: 
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Understanding each term
In this expression, it is fairly intuitive to point out which term is 
due to external forces and which is diffusion.

Diffusion Force

The second left-hand term is clearly the diffusion term, because it contains 
a gradient with respect to space, and diffusions by their very definition are 
created by nonzero spatial gradients of particles (or their probability density 
in this expression) 
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The Scattering Events Term

The scattering term is defined in Brennan’s book as
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In this expression S(k,k’) is the rate at which a particle makes a transition 
from state k to k’. S(k’,k) is similarly a rate, but transferring from k’ to k. 
f(r,k,t) is the probability of that state being occupied by another particle, 
and 1-f(r,k,t) is the probability of the state being empty.

You can see that a scattering event in this definition does not change a 
particle’s location, but rather just its k-state (momentum, which is 
proportional to velocity, which makes intuitive sense when one thinks of 
classical scattering events e.g. billiard balls)



The Boltzmann Equation incorporates 
several approximations*:

1. Quantum effects are negligible i.e. position and momentum can be
measured simultaneously

As seen in the very definition of the probability distribution function
2. Collisions are instantaneous

Thus external fields and scattering are uncoupled
3. Collisions are all binary (occurring between 2 bodies)
4. Collisions do not accelerate particles, but merely change their direction 

of travel.
5. The particles are all the same
6. The force term, F, is from external fields/forces and not from atom-to-

atom interactions (e.g. electric repulsion from like-charges)

Plus several others that are very obscure and overly-complicated for our 
surface-level understanding and needs.

*: the approximations listed here refer to the derivation of Boltzmann’s equation found 
in Brennan’s book. Some authors in other books make adjustments to the form of 
Boltzmann’s equation in order to facilitate such things as multiple atom types and 
quantum mechanical effects (just to name a few)



Solving Boltzmann’s Equation

Solving Boltzmann’s equation analytically can 
be a large challenge; thus, a huge variety of 
approximate solutions have been developed 
to analytically or numerically solve the 
equation in certain, specific scenarios.

One very common scenario: distribution relaxes 
to a steady-state. This is called the 
“relaxation-time approximation”.



Relaxation-time Approximation
In this approximation the integral scatter-term is 

replaced by a linear expression:
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Events

= −
f − fss

τ

In which fss is a steady-state distribution, which out 
system will relax to in a characteristic time τ.

From this expression we can find our nonequilibrium 
distribution:
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Relaxation-time Approximation
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We can see that as time progresses, the distribution probability
function approaches the steady-state value.

Understand the interesting concept that scatter is what is 
bringing the system to steady-state -- as in this case

lim
t→∞

∂f
∂t

= lim
t→∞

−
f (t) − f ss

τ
= −

f ss − f ss

τ
= 0

Side-note: Without scatter the system could sustain itself in nonequilibrium (this is the 
basis of superconductivity)
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