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The Maxwell-Boltzmann Distribution
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Maxwell-Boltzmann Distribution
Scottish physicist James Clerk Maxwell developed his kinetic theory of gases in 1859.  
Maxwell determined the distribution of velocities among the molecules of a gas. Maxwell's 
finding was later generalized in 1871 by a German physicist, Ludwig Boltzmann, to 
express the distribution of energies among the molecules.

Maxwell made four assumptions…

[1] McEnvoy, J.P. and Zarate, Oscar; “Introducing Quantum Theory;” 2004
[2] http://www.hk-phy.org/contextual/heat/tep/trans01_e.html

Maxwell pictured the gas to consist of 
billions of molecules moving rapidly 
at random, colliding with each other 
and the walls of the container.

This was qualitatively consistent with  
the physical properties of gases, if we 
accept the notion that raising the 
temperature causes the molecules to 
move faster and collide with the walls 
of the container more frequently.[1]

[2]
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The diameter of the molecules 
are much smaller than the distance

between them

Maxwell-Boltzmann Distribution

Maxwell’s 
Four Assumptions[1]

xD D

The collisions 
between molecules

conserve energy

The molecules move
between collisions without
interacting as a constant
speed in a straight line

The positions and velocities
of the molecules are

INITIALLY AT RANDOM
Great

insight!

[1] McEnvoy, J.P. and Zarate, Oscar; “Introducing Quantum Theory;” 2004
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Maxwell-Boltzmann Distribution
By making these assumptions, Maxwell could compute the probability that a molecule 

chosen at random would have a particular velocity.

This set of curves is called the Maxwell 
Distribution.  It provides useful 
information about the billions and 
billions of molecules within a system; 
when the motion of an individual 
molecule can’t be calculated in 
practice. [1]

We will derive the Maxwell-Boltzmann 
Distribution, which will provide useful 
information about the energy.

[1] McEnvoy, J.P. and Zarate, Oscar; “Introducing Quantum Theory;” 2004

[1]

Raising the temperature causes 
the curve to skew to the right, 
increasing the most probable 
velocity.
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Maxwell-Boltzmann Distribution
Why use statistical mechanics to predict molecule behavior?  Why not just 

calculate the motion of the molecules exactly?

Even though we are discussing classical physics, there exists a degree of 
“uncertainty” with respect to the fact that the motion of every single particle 
at all times cannot be determined in practice in any large system.

Even if we were only dealing with one mole of gas, we would still have to 
determine characteristics of 6x1023 molecules!!

Maxwell’s theory was based on statistical averages to see if the macrostates, 
(i.e. measurable, observable) could be predicted from the microstates.
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Maxwell-Boltzmann Distribution
In Section 5.3, it was determined that the thermal equilibrium is established 

when the temperatures of the subsystems are equal.  So…

What is the nature of the equilibrium distribution for a system of N non-
interacting gas particles?

The equilibrium configuration corresponds to the most probable (most likely) 
configuration of the system.

Consider the simplest case, a system of N non-interacting classical gas 
particles.

– Classical system:
• there are no restrictions on how many particles can be put into any one state 

simultaneously
• the particles are distinguishable, i.e. each particle is labeled for all time

First, we’ll need to determine the number of microstates within any given 
configuration, i.e. the number of ways in which N objects can be arranged 
into n distinct groups, also called the Multiplicity Function.
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Maxwell-Boltzmann Distribution
The Multiplicity Function - determine the number of ways in which N objects 

can be arranged into n containers.

Consider the first twelve letters of the alphabet:

a b c d e f g h i j k l

Arrange the letters into 3 containers without replacement.  Container 1 holds 3 
letters, Container 2 holds 4 letters, and Container 3 holds 5 letters.

| _ _ _ | | _ _ _ _ | | _ _ _ _ _ |

For the 1st slot, there are 12 possibilities. | c _ _ | | _ _ _ _ | | _ _ _ _ _ |

For the 2nd slot, there are 11 possibilities. | c h _ | | _ _ _ _ | | _ _ _ _ _ |

For the 3rd slot, there are 10 possibilities. | c h k | | _ _ _ _ | | _ _ _ _ _ |

etc…

There are 12! possible arrangements if the containers are ignored.
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Maxwell-Boltzmann Distribution
(cont.)  The Multiplicity Function - determine the number of ways in which N objects can 

be arranged into n containers

Since we care about the containers but we don’t care about the order of the letters within 
each container, we divide out the number of arrangements within each given 
container, resulting in:

720,27
!5!4!3
!12

=
⋅⋅

There are 27,720 ways of partitioning 
12 letters into the 3 containers

The Multiplicity 
Function:

In general, the number of distinct arrangements of N particles into n groups containing 
N1, N2, …, Ni, …, Nn objects becomes:
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Where Ni is the number of 
objects in container i
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Maxwell-Boltzmann Distribution

Physically, each container corresponds to a state in which each particle can be put.
• In the classical case, there are no restrictions on how many particles that can be 

put into any one container or state
• See Section 5.7 for the quantum case where there are restrictions for some 

particles

The states are classified in terms of 
their energy, Ei, and degeneracy, gi

Think of the system as n containers with gi subcontainers.

So, how can we arrange Ni particles in these gi
subcontainers?

Each level has gi degenerate states into 
which Ni particles can be arranged

There are n
independent levels

Ei

Ei+1

Ei-1

Degenerate states are different states that 
have the same energy level.  The number 
of states available is known as the 
degeneracy of that level.
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Maxwell-Boltzmann Distribution

Since we are dealing with the classical case:
• there are no restrictions on how many particles can be put into any one subcontainer 

or state simultaneously
• the particles are distinguishable, i.e. each particle is labeled for all time

So, how many arrangements of Ni particles in 
these gi subcontainers are possible?

Consider an example where we have 3 particles 
and 2 subcontainers:

R
G

B

3 particles 2 subcontainers

n containers with gi subcontainers.
· · ·
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Maxwell-Boltzmann Distribution
(cont.)  How many arrangements of Ni particles in these gi subcontainers are possible?

R
G

B

R

G B

R

GB R

G

B

R

G

B

R

G B

R

GB

R
G

B

There are 8 possible arrangements, or 23

In general, the possible arrangements of Ni
particles into gi subcontainers is:

iN
ig

Therefore, if our system has a particular state that has a particular degeneracy, there is 
an additional multiplicity of iN

ig for that particular state.
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Maxwell-Boltzmann Distribution
(cont.)  Therefore, the total Multiplicity Function for a collection of classical particles is:

Constraint 1 implies:

There are two physical constraints on our classical system:
1. the total number of particles must be conserved
2. the total energy of the system must be conserved

where U is the total energy for the system
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Constraint 2 implies:

UNE
n

i
ii == ∑

=1
ψ

The equilibrium configuration corresponds to the most probable (most likely) 
configuration of the system, i.e. the configuration with the greatest multiplicity!  To 
find the greatest multiplicity, we need to maximize Q subject to constraints.

ConstantConstant
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Maxwell-Boltzmann Distribution
From previous slide:

∑∑
==

−+=
n

i
i

n

i
ii NgNNQ

11
!lnln!lnln

∏
∏ =

=


















=
n

i

N
in

i
i

ni
ig

N

NNNNNQ
1

1

21

!

!),...,,...,,(

This equation will be easier to deal with if we take the logarithm of both sides:

xxxx −≈ ln!ln
Applying Stirling’s approximation, for large x:
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In order to maximize, we need to make use of Lagrange multipliers and Constraints 1 
and 2:

Almost exact 
because we’re 
dealing with very
large x, 1023 particles!

The derivatives of the 1st and 2nd constraints are zero
because the constraints are equal to constants

All we are doing is adding and subtracting
constants multiplied by zero!
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Maxwell-Boltzmann Distribution
From previous slide:
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Substituting in ln Q and Constraints 1 and 2:
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Taking the derivative, noting that N is constant and the only terms that are nonzero are 
when i = j:
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Maxwell-Boltzmann Distribution
From previous slide:

To find β, we need to determine the total number of particles, N, in the system and the 
total energy, E, of the system.

If the states are closely spaced in energy, they form a quasi-continuum and the total 
number of particles, N, is given by:

Where D(E) is the Density of States Function found in Section 5.1
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What are α and β?
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Maxwell-Boltzmann Distribution
From previous slide:

Using the standard integral:
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Maxwell-Boltzmann Distribution
The total energy, E, of the system can be found by:

Using the standard integral again:
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Maxwell-Boltzmann Distribution
The average energy per particle is given as:

Where kB is the Boltzmann constant.

Equating the average energy per particle with the ratio of our equations for E and N:
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Maxwell-Boltzmann Distribution
From previous slide:
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Use the relationship[1]:

[1] http://mathworld.wolfram.com/GammaFunction.html eq. 37
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Maxwell-Boltzmann Distribution
Now we have β but we still need α. α will be derived in Section 5.7.

TkB

µα =

Where µ is the chemical potential.  In Section 5.8, we will find out that the chemical 
potential, µ, is exactly equal to the Fermi Energy, EF — Leaving us with an α of:

(Eq. 5.7.26)
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Substituting α and β into f(Ej):
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Maxwell-Boltzmann Distribution
From previous slide:

Maxwell-Boltzmann 
Distribution

Reversing terms in the numerator of the exponent:

This distribution gives the number of particles in the jth state, where the jth state has a 
degeneracy, gj.

If we want to find the probability of finding the particle in the jth state, we need to 
normalize.  We’ll start by dividing the number of particles in the jth state, Nj, by the 
total number of particles, N.

Using Constraint 1 and f(E):
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It’s intuitive!  For a given 
temperature, the chance of higher 
energy states being occupied 
decreases exponentially.
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Maxwell-Boltzmann Distribution
From previous slide:

Solving for eα:

Substituting eα into f(Ej):
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Maxwell-Boltzmann Distribution
From previous slide:

This normalized distribution is the probability, Pj, of finding the particle in the jth state 
with energy Ej:

Since j is just a dummy index, the probability of finding of a particle having an energy Er
is:
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Maxwell-Boltzmann Distribution
If the degeneracy factor is 1, i.e. no repeatable arrangements, the probability becomes:

If we want to find out the mean value of a physical observable, y, we can make use of 
the following equation derived in Chapter 1:

For example, the mean energy of a system can be determined by:
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Maxwell-Boltzmann Distribution
From previous slide:

The classical partition function:
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This denominator occurs very often—
every time a mean value is calculated in 
the Maxwell-Boltzmann Distribution.  
Since it occurs so often, it is given a 
special name, the classical Partition 
Function, Z.

We can use the classical partition function to easily calculate the mean value of the 
energy.

First, we need to note the following relationships:
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Maxwell-Boltzmann Distribution
From previous slide:

Substituting into the mean energy equation:
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The mean energy equation
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Maxwell-Boltzmann Distribution
Summarizing:
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Maxwell-Boltzmann Distribution
Summarizing:

( )ZE ln
β∂
∂

−=

• For a given temperature, the chance 
of higher energy states being 
occupied decreases exponentially

• The area under the curve, i.e. the 
total number of molecules in the 
system, does NOT change 

• The most probable energy value is 
at the peak of the curve, when 
dP/dE = 0

• The average energy value is greater 
than the most probable energy value

• If the temperature of the system is 
increased, the most probable energy 
and the average energy also 
increase because the distribution 
skews to the right BUT the area 
under the curve remains the same

http://www.bustertests.co.uk/studies/kinetics-collision-theory-maxwell-boltzmann-distribution.php
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