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Substitution of Bloch function into Schrodinger's Equation

In Chapter 7.4 the wave function in a crystal was rewritten as a Bloch function to show the
periodicity in the crystal’s lattice
P ik, () where k is defined as the crystalline momentum

If this wave function is substituted into the Schrodinger's Equation then it becomes
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Taking the Laplacian of the term &7y (1) yields:
[e’k runk(r)l I u, +ek "Vu, —|—21é’”k Vu,,

Substitute this into the previous equation
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Substitution of Bloch function into Schrodinger's Equation

(cont'd)
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Remember that the linear momentum operator is defined as
p=—1ihV

Substitute in p to get
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Now choose a specific point in k-space labeled k.
Since u.,(r) forms a complete set for any given k, then the wave function for any value of
k can be written in terms of k; as the summation

1 ()= 2 (k= g, (1)

where n’ is a dummy variable



Evaluation around k =k

Define the Hamiltonian operator at the point k = k, to be
H, =p—2+iI€0~f9+h2k2
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Substituting the new value of »” into the expanded Schrodinger's Equation yields
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Set the potential voltages to be equal so they cancel each other out



Integration over all space
Substitute in the expanded form of u,,(r) to get
1, ) R Sk T Bk

Now multiply all terms by and integrate over all space
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Break the integration into four separate terms
A. Zjuzkonncn'un,ko
B zﬁj‘u (lg—l;)-ﬁc u .k,

. ~ m nky 0 n"“n'""0

n’ 2 72

Co X, (B = ke,

D_ Zju:kocn'En'un'kO

'

n



Integration of separated terms

For term A:

.
Zjunkonn c, u,k,
-

Since H,, is the Hamiltonian for k = k, then from the reduced Schrodinger's equation it is
possible to derive
H, u, =E,(k)u,
Where E,(k,) is defined as the energy for k set to k,
The equation then becomes
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Which integrates to
D E, (koS

The kroniger delta is zero for all terms except when n’ is equal to n.
Therefore term A reduces to
E, (ky)c,



Integration of separated terms

For term B:
S fu (8 ~ky)- Beuk,
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Define p . so that
ﬁnn' = Iu:ko ﬁunko
then term B reduces to
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Putting all the terms together you get
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Integration of separated terms

(cont’d)
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This leads to a matrix that is of the form:
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A solution to the matrix can be found by implementing perturbation theory



Solution through perturbation theory

A zero order approximation for the energy for each state is given by disregarding the
values that are not on the diagonal of the matrix. Therefore the energy for each state is:

En(k)=En(ko)+£(k2—k§)
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The first order approximation term is obtained by setting the perturbation Hamiltonian to
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The energy level for the first term then becomes
E" =<‘P,§°) ‘Hp“}’,fo)> where W© =%y (r)
B = [, (1) 2 (=) e, 1)
Then define 7. to be

Py = [, ()P, (r)
The first order energy is then
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Second order approximation

The second order approximation term is obtained by
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The total energy eigenvalue is arrived at by combining the zero, first, and second order
approximations
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Special cases for k-p

Now consider the case where the crystal is symmetric in every direction from point k. If
this were to occur then the first order correction term  would go to zero.

If kO were set to zero and was also at a center of the symmetry for the crystal then the
energy eigenvalue would be reduced to
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An equation for the effective mass in the crystal can be obtained by rewriting the energy
equation as

En(k)zEn0+£l€i-/€
. 2m m
Where ,,* is defined as an effective mass tensor that represents the curvature of the E-k
diagram versus the direction in k-space. The effective mass will be different depending

on the direction in k-space.
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Uses for the k-p approximation

The k-p approximation is useful for approximating the band gap energy for materials that
have low band gaps, such as InN. This is because as the difference in energy between

states becomes larger, then the factor £+ ~£. causes the second order correction term
becomes smaller and smaller.



