ECE 3040 Dr. Doolittle

Homework 1

- 1. Given the ternary compound semiconductor In_xGa_{1-x}As,
 - a) What is the lattice constant and composition that would result in a 0.85 eV semiconductor?
 - b) What is the relationship between lattice constant and chemical bond strength and how does that translate into energy bandgap? You can use the data from Lecture 1.

<u>Hints</u>:

Assume that the bonds are covalent in nature.

Assume that energy bandgaps and lattice constants of compound semiconductors scale linearly (which is a good first-order approximation).

InAs has a bandgap of 0.36 eV, while GaAs has a bandgap of 1.43 eV.

InAs has a lattice constant a = 6.06 angstroms, while GaAs has a lattice constant a = 5.65 angstroms.

Ans:

(a) Given that, $E_g = 0.85 \ ev, E_g^{InAs} = 0.36 \ ev, E_g^{GaAs} = 1.43 \ ev$

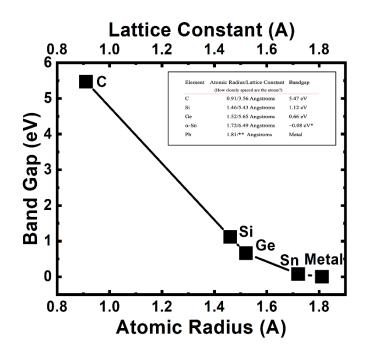
Let x be the fraction of given ternary compound semiconductor.

Equation to find the x value,

0.85 = 0.36 + (1.43 - 0.36) * (1 - x)

 $\Rightarrow 1.07 * x = 0.58$

 $\Rightarrow x = 0.54$


Therefore, the composition of InGaAs would be In0.54Ga0.46As.

Calculating lattice constant a_{InGaAs} , Given that, $a_{InAs} = 6.06$ angstrom, $a_{GaAs} = 5.65$ angstrom

 $a_{InGaAs} = 6.06 + (5.65 - 6.06)(1 - 0.54)$ $\Rightarrow a_{InGaAs} = 5.87 \text{ angstrom}$

(b) A shorter lattice constant indicates that the atoms are closer together in the crystal lattice. When atoms are closer, the overlap of their electron clouds (where they share electrons) is greater. This increased overlap leads to stronger covalent bonds because the shared electrons are held more tightly between the nuclei of the atoms, resulting in a stronger attraction.

The bandgap in a semiconductor decreases with increasing lattice constant because the larger atomic spacing leads to weaker electron-electron interactions, greater electron wave function overlap, and changes in effective mass, all of which reduce the energy separation between the valence and conduction bands, resulting in a smaller bandgap.

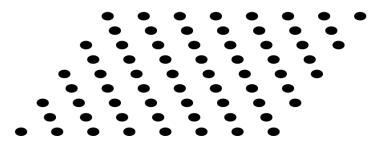
- 2. GaP is a III-V compound semiconductor with a zincblende crystal structure and lattice constant a = 5.45 angstroms.
 - a) Suppose that instead of the semiconductor it is (Eg=2.24 eV), GaP was a metal and as such, each atom in GaP gave up exactly one electron. What would the electron concentration in the crystal be?
 - b) Alternatively, suppose only one-trillionth of the atoms in the crystal gave up an electron. What would the electron concentration be?

<u>Note</u>: It may be helpful to use the visualization aids on the web page or the images in your text or 3D images online.

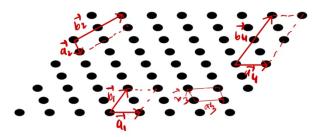
Ans: (a) Finding the atomic density for GaP, $a_{GaP} = 5.45 \ angstrom = 5.45 * 10^{-8} \ cm$ Volume = $(a_{GaP})^3 = (5.45 * 10^{-8})^3 \approx 1.61 * 10^{-22} \ cm^3$

Zincblende can be seen as two interpenetrating FCC structures. So, the no. of atoms per unit cell = 8

Therefore, atomic density = $\frac{8}{1.61*10^{-22}} \approx 4.97 * 10^{22} \text{ cm}^{-3}$ Considering GaP as a metal, we can safely assume that each atom will give one electron.


Therefore, this atomic density will be the electron concentration in the crystal.

Note: This sets the maximum electron density achievable within a specific crystal structure. If the substance is a semiconductor or insulator (with a relatively large bandgap), the actual electron concentration will be considerably less than this upper limit.


(b) Assuming one-trillionth (10^{12}) of the atoms in the crystal gave up an electron,

Therefore, the electron concentration = $\frac{4.97*10^{22}}{10^{12}} \approx 4.97 * 10^{10} cm^{-3}$

3. Using the two-dimensional lattice below, draw and label four different unit cells and identify which one(s) is/are primitive.

Ans: 4 unit cells are shown as below,

4. Describe in three sentences or less how an acceptor atom in silicon can have a stationary (fixed) negative charge and where that negative charge is located at in the region around the acceptor atom.

Ans:

An acceptor atom in silicon, such as boron, creates a stationary negative charge through a process called doping. When boron is introduced into the silicon lattice, it leaves behind a vacancy or "hole" in the crystal structure, which is effectively a positive charge. Electrons from nearby silicon atoms occupy this hole, forming a stationary negative charge localized at the position of the missing electron. This negative charge effectively neutralizes the positive charge of the boron atom, maintaining overall electrical balance within the silicon crystal.

5. In GaAs (a III-V compound) what is the role (donor or acceptor) and why of:

a) Oxygen substituting for As? b) Si substituting for Ga? c) Si substituting for As? d) Mg substituting for Ga? Note you may need to reference a periodic table.

Ans:

(a)Refer to the periodic table,

Oxygen(Grp VI) substituting for arsenic(Grp V) in GaAs introduces extra energy levels near the conduction band, creating donor levels. Due to its electron configuration, oxygen

brings an extra electron into the crystal. Therefore, in GaAs, oxygen serves as a shallow donor.

(b)When silicon (Si) (Grp IV) is substituted for gallium (Ga) in GaAs, it typically acts as a donor impurity. Si introduces extra electrons into the crystal lattice. This additional electron is loosely bound and can easily become mobile within the crystal.

(c)When silicon (Si) (Grp IV) is substituted for As (Grp V) silicon acts as a deep acceptor. According to the electron configuration, Si has four valence electrons, while As has five valence electrons. When silicon replaces arsenic in the GaAs lattice, it introduces fewer electrons into the crystal structure. These electrons create holes in the valence band, as there is an electron deficiency.

(d) Mg introduces an extra positive charge (holes) into the crystal lattice, making it ptype (positively doped). Because Mg has two fewer electrons in its outermost shell compared to gallium. When it replaces a gallium atom in the GaAs lattice, it introduces a deficiency of electrons, creating holes in the valence band.

1 IA 1A	Periodic Table of the Elements																18 VIIIA 8A
1 *** Hydrogen 1,008 **	2 IIA 2A 4 Be	ľ						Atomic Number	Valence Charge			13 IIIA 3A 5 ⁴³	14 IVA 4A 6 *4.4		16 VIA 6A 8 ²	17 VIIA 7A 9 F	² He Helium 4.003
LI Lithium 6.941 11 *1 Na	Beryllium 0.012 12 *2 Mg Magnesium	3	4	5	6	7	8	Na Atomi	ame c Mass 10	11	12	Boron 10.811 13 *3 Al	Carbon 12.011 14 Si	Nitrogen 14.007 15 +5.+33 P	Oxygen 15.000 16 +6.2 S	Fluorine 18.908	Ne ^{Neon} 20.180 18 °
Sodium 22.990 19 *1 Potassium	24.305	111B 3B 21 *3 Scandium	1VB 4B 22 *4 Ti Titanium	VB 5B 23 ^{+5,+4,+3} V Vanadium	VIB 6B 24 +6,+3,+2 Chromium	VIIB 7B 25 ^{+7,+4,+2} Mn Manganese	26 +3,+2 Fe	- VIII	28 *2 Ni Nickel	1B 1B 29 +2.+1 Cu Copper	2B 30 *2 Zn Zinc	Aluminum 28.982 31 ⁴³ Gallium	Silicon 28.086 32 *4 Germanium	Phosphorus 30,974 33 +5,+3 Ass Arsenic	Sulfur 32.086 34 +4.2 Selenium	Chlorine 35.453 35 +51 Bromine	Argon 30.048 36 Krypton
30.008 37 *1 Rubidium 84.408	40.078 38 *2 Strontium 87.02	44.956 39 +3 Yttrium 88.906	47.88 40 *4 Zirconium 91.224	50.942 41 *5 Nobium 92.906	51.998 42 +6.44 Mo Molybdenum 95.95	54.938 43 TC Technetium 98.907	55.933 44 +4.+3 Ruthenium 101.07	58.933 45 +3 Rhodium 102.908	58.883 46 +4.+2 Pd Palladium 108.42	63.548 47 *1 Ag Silver 107.868	65.39 48 *2 Cdd Cadmium 112.411	69.732 49 *3 In Indium 114.818	72.61 50 +2.4 Sn Tin 118.71	74.922 51 +3 Sb Antimony 121.760	78.972 52 *4 Tellurium 127.6	79.904	54 ° Xenon 131.29
55 *1 Cesium 132.005 87 *1	56 *2 Ba Barium 137.327 88 *2	57-71 89-103	72 *4 Hafnium 178.49 104 *4	73 ¹⁵ Tantalum 180,948 105 ^{unk}	74 *6.+4 W Tungsten 183.85	75 +5.+4.+3 Re Rhenium 186.207	76 *4 Osmium 190.23 108 unk	77 +4,+3 Ir Iridium 192.22	78 +4.+2 Pt Platinum 195.08	79 *3 Au 60/d 198.967	80 +2,+1 Hg Mercury 200.59	81 +3,+1 Thallium 204.383 113 unk	82 +2 Pb Lead 207.2 114 unk	83 +3 Bi Bismuth 208,880	84 ⁺⁴ Polonium [208.982] 116 ^{unk}	85 -1 Astatine 200.987 117 unk	86 ° Radon 222.018 unk
Francium 223.020	Radium 226.025	89-103	Rutherfordium	Dubnium	Seaborgium [200]	Bh Bohrium	Hassium [200]	Meitnerium [200]	Darmstadtium	Roentgenium	Copernicium [277]	Ununtrium unknown	Flerovium [289]	Ununpentium unknown	Lv	Ununseptium unknown	Ununoctium unknown
Lanthanide Series 57 a 58 a 3 59 a 4 59 b a 4 50																	
	Actir Ser	ies Acti	nium Tho	rium Prota	*3 92 a tinium .036 92 Urai 238	nium Nept	unium Plute	onium Ame	ricium Cu	rium Berk	*3 98 98 Califo 251	mium Einst	einium Ferr	mium Mende	elevium Nob	o L	encium 1021

© 2013 Todd Helmen chemistry.about.com