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Lecture 29

Operational Amplifier frequency Response

Reading: Jaeger 12.1 and Notes
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Ideal Op Amps Used to Control Frequency Response

Low Pass Filter

h Previously:
: Vour  Vou _ R
1 - I/m Rl
R1 R2
Virm VWV VWV

Now put a capacitor in parallel with R2:

I + If s=jm,
Vout 1
R
|- Vout _ C2S

I/in Rl
vV R1 R2 1
. R o
in VWV C\Z/\/\/_ v, 1 e __Rz( | J
I |7 Vi R R, _|_1 R \1+R,C,s
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Ideal Op Amps Used to Control Frequency Response

Low Pass Filter
ak
Vout
, Vout RZ [ 1 j

R1 R2 V., R \1+R,C,s

Vi VW VW

*At DC (s=0), the gain remains the same as before (-R,/R,).

At high frequency, R,C,s>>1, the gain dies off with increasing frequency,

s
Vour |1 _ C,s
Vi R C,s R,
L _ 2 f, =W
R.C, H H

At high frequencies, more “negative feedback” reduces the overall gain
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Ideal Op Amps Used to Control Frequency Response

4,| =20 Log[

Iy

@ -3dB drop at f; (V

Low Pass Filter

7

out

124

j 1s the gain expressed in dB

has dropped in half?)

out

Slope = 20 dB/ Decade

*At DC (s=0), the gain remains the same as before (-R2/R1)

*At high frequency, R,C,s>>1, the gain dies off with increasing frequency

Implements a “Low Pass Filter”: Lower frequencies are allowed to pass the filter
without attenuation. High frequencies are strongly attenuated (do not pass).
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Ideal Op Amps Used to Control Frequency Response

r h High Pass Filter
Vout Vom _ &
1 I/zn Rl

R2
VWV
out __
r h V.o 1
in R 4+ —
Vout 1 C,s
— |- Vout — R2C1S
V. 1+ R,Cys
C1 R1 R2
Vi v VW

*At DC (s=0), the gain 1s zero.

R1

Virm VAW

*At high frequency, R,C,;s>>1, the gain returns to 1t’s full
value, (-R,/R,)
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Ideal Op Amps Used to Control Frequency Response
High Pass Filter

R
4,|,, =20 Log (172]

1

— f‘;-3dB drop at f;
Vout _ R2 CIS
V., 1+R,Cs
20 dB/ Decade 1
f L —
27 R,C,
>yog(ﬂ

*At DC (s=0), the gain is zero.
*At high frequency, R,C,s>>1, the gain returns to it’s full value, (-R,/R,)

Implements a “High Pass Filter”: Higher frequencies are allowed to pass the filter

without attenuation. Low frequencies are strongly attenuated (do not pass).
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Ideal Op Amps Used to Control Frequency Response

Band Pass Filter (combination of high and low pass filter)

+
r Vou

) t

Vin V\N_
C2)
: ||7
R,|—
@ Cos
I/zn Rl + L
Cs
Low  High
R Pass  Pass
2
CZS A '
R, + . 4
Vi C,s _( | j( R,C,s j
V. R, +1 1+R,C,s \1+R,C,s
. Cys .
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Ideal Op Amps Used to Control Frequency Response

Band Pass Filter (combination of high and low pass filter)

out __ 1 RZCIS
V. 1+R,C,s \ 1+ R,Cys

s @ -3dB drop at f}

Slopes = %FZO dB / Decade

4,| =20 Log ER—]
: Jo << Jfu

O~
1
S = 27 R,C
1
Ji 27 R,C
f fiy Log()
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Ideal Op Amps Used to Control Frequency Response

Band Pass Filter (combination of high and low pass filter)

V.. _ 1 R,Cs
V. 1+R,C,s \1+R,C,s

Slopes = %FZO dB / Decade

R
4,| =20 Log (172]

1

@ More than a -3dB drop at f; and f;

Jo<fu and [, — [y

f, >Log(ﬂ
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General Frequency Response of a Circuit

Poles and Zeros
Generally, a circuit’s transfer function (frequency dependent gain expression) can be written as the

ratio of polynomials:
lew)\/l - (TZZZD-)2 \/1 - (T3zw ’

_ (le )(1+T22 1+Tzz
\/1 T,@ )2\/1—(2'2]@)2\/1—(731)0)2

V. (1+2'1 SXI-FTZS l+7,,s
Complex Roots of the numerator polynomial are called “zeros” while complex roots of the
denominator polynomial are called “poles”

1%

out __

Each zero causes the transfer function to “break to higher gain” (slope increases by 20 dB/decade)
Each pole causes the transfer function to “break to lower gain” (slope decreases by 20 dB/decade)

|

0 dB/Decade
~

%, Typically, t==RC
€c,
\ 0 dB/Decade

¥

V

out

20Log(
V.
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Real Op Amp Frequency Response

*To this point we have assumed the open loop gain, Aq . oop> OF
the op amp 1s constant at all frequencies.

*Real Op amps have a frequency dependant open loop gain.

|A|dB —BIdB
80 { — —2010g]4/
A o i 60 |
_ OB __ T
AOpenLoop (S ) _ — - —20 dB/decade
STy ST Wy a0 |
where, - @5
20
S=jm@ ! r
, | | | | o
A, =Open loop gain at DC 0 0 10f 105 105 107N

Radian frequency (log scale)

@ , = Open loop bandwidth

@, = Unity - gain frequency (frequency where ‘A()pen Loop (S)‘ = 1)
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Real Op Amp Frequency Response

|A|d3 FBIdB
80 L — 201084, y (jo)| = A,
L OpenLoop J T 5 >
\/ o +o B
60
- —20 dB/decade .
40 F ‘AOpenLoop (] w)‘ =
L a)B
20
or
|
0 1

1 |
100 104 10° 105 107\
Radian frequency (log scale)

At Low Frequencies: ‘AOpenLoop =

Ay, gy

\A

OpenLoop | ~

At High Frequencies: - -

For most frequencies of interest, ®>>w; , the product of the gain and frequency is
a constant,

fr = ZZUT Gain — Bandwidth Product (GB W)
T
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Real Op Amp Frequency Response

For the"741" Op Amp, For the"Op 07" Op Amp,

A, ~ 200,000 =106 dB A, ~12,000,000 =141 dB

@, ~(27)5Hz @, ~ (27)0.05Hz

@, ~ (27[) 1 MHz @, ~ (27[) (3.6 1\Y/[Hz}
GBW GBW

If the open loop bandwidth is so small, how can the op amp be useful?

The answer to this 1s found by considering the closed loop gain.
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Real Op Amp Frequency Response

Previously, we found that the closed loop gain for the Non-
inverting configuration was (for finite open loop gain):

. Vout . AOpenLoop h . R1
V ,ClosedLoop ~— 1% _ 1 Y » WICTC ’B o R R
in + IB OpenLoop 1 + 2
Using the frequency dependent open loop gain:
_ Vout _ OpenLoop
V ,ClosedLoop I/m 1 n ﬂ AopenLoop
A,@
y B S+, B A, @, Low
V ,ClosedLoop ~— AO @, o g+ ZD'B (1 4+ ﬂ AO) Pass
1+ 4
s+, A
[ )
Ay@ g Ay
y _ WB(1+ﬂA0) (1"':8140) _ 1 )
V ,ClosedLoop ~— g - g - iy V,ClosedLoop @DC
+1 +1 I+ —
ZUzs'(l"‘ﬁAo) ZUB(1+IBAO) Wy
where,

@, = Upper Cutoff Frequency (Closed Loop Bandwith) =, (1 + f AO)
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Real Op Amp Frequency Response

|Al g
80 A i
The closed Loop [ :/ Open LoopGain
Amplifier has a B
lower gain than 60 Closed LoopGain
the Open Loop
Amplifier
40
20
()
0 1 i
Closed Loop Bandwidth 10° 104 10° 106 10’
o Radian frequency (log scale)
wH:wB(l—i_ﬂAO): - \_ J
V ,ClosedLoop @DC
. The closed Loop Amplifier has a higher
Closed Loop DC Gain bandwidth than the Open Loop Amplifier
AOpenLoop

AV,ClosedLoop —
. 1+ 5 Ayt
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Real Op Amp Frequency Response

| Al g
80

60

40

Closed Loop Gain set
by feedback network

below oy

Closed Loop Gain

i lAy(j @)l

20

0 ] 1 1
10 104 10° 108 107
Radian frequency (log scale)

(Gain x Bandwidth )( = (Gain x Bandwidth )‘

Open Loop Closed Loop

Example: 741 Op Amp is used as a low pass filter with f;=10kHz. What is the
maximum voltage gain possible for this circuit?

From before, we can write:

(200,000 x 5) = (Gain x 10,000 )

Open Loop Closed Loop

(Gain )‘ =100 % Maximum

Closed Loop

set Open Loop
/ Gain above oy
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Real Op Amp Frequency Response

For the Inverting Configuration:

v | v

Y -

out

R1

Vi VWV

R2

%

Georgia Tech

By sup erposition,

Rl R2
1 + 2 1 + 2
R
— 2
V_ = voutIB + vinlg
Rl
but,
vout = _V—AV,OpenLoop
SO,
1% R
out _ 2
_A _voutIB+vinlBR
V ,OpenLoop 1
A . vout AV,OpenLoopﬁ

V ,ClosedLoop

Vin 1 + AV,OpenLoopﬂ Rl
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Real Op Amp Frequency Response

Inserting the frequency dependent open loop gain:

AV,OpenLooplB (_ Rz ]

V ,ClosedLoop = 1+ A

V ,OpenLoop ﬂ Rl
Ap@ g i
) B S+w, (_ sz_ Aowgﬂ [_ sz
V ,ClosedLoop ~— B
’ 1+(AOWB]:3 R ) sto,+A,0,8\ R
S + Wy
Aowy
A — Ao@ R @ (L+ 4o5) B
V ,ClosedLoop s+, (l + Aoﬂ) Rl S+, (1 + AOﬂ) Rl
@,(1+4,5)

4,8 [ R,
1+4,8) R

i +1
ZUB(l"'Ao/B)

A =

V ,ClosedLoop
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Real Op Amp Frequency Response

(4B (R,
1+ 4,8\ R,
AV,ClosedLoop — <
+1
@ g (1 + 4,0 )
1
AV,CZosedLoop = g AV,ClosedLoop @DC
1+
W p (1 + 4,0 )
Closed Loop Bandwidth Closed Loop DC Gain
Oy =0pg (1 + B A, ) = r AV ClosedLoon = AV’Ope"LOOPﬁ (_ sz
AV,ClosedLoop @DC , g 1 + AV,OpenLoopﬁ Rl

The frequency behavior 1s the same as for the the Non-Inverting case!
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