Lecture 7 ## **Drift and Diffusion Currents** Reading: **Pierret 3.1-3.2** # Ways Carriers (electrons and holes) can change concentrations - •Current Flow: - •Drift: charged particle motion in response to an electric field. - •Diffusion: Particles tend to spread out or redistribute from areas of high concentration to areas of lower concentration - •Recombination: Local annihilation of electron-hole pairs - •Generation: Local creation of electron-hole pairs - •Direction of motion: - •Holes move in the direction of the electric field (from + to -) - •Electrons move in the opposite direction of the electric field (from to +) - •Motion is highly non-directional on a local scale, but has a net direction on a macroscopic scale - •Average net motion is described by the drift velocity, v_d with units cm/second - •Net motion of charged particles gives rise to a current Given current density J (I=J x Area) flowing in a semiconductor block with face area A under the influence of electric field E, the component of J due to drift of carriers is: $$J_p|_{Drift} = q p v_d$$ and $J_n|_{Drift} = q n v_d$ Hole Drift current density Electron Drift current density At low electric field values, $$J_p = qp\mu_p E$$ and $J_n = qn\mu_n E$ μ is the "mobility" of the semiconductor and measures the ease with which carriers can move through the crystal. [μ]=cm²/V-Second Thus, the drift velocity increases with increasing applied electric field. More generally, for Silicon and Similar Materials the drift velocity can be empirically given as: $$v_{d} = \frac{\mu_{o}E}{\left[1 + \left(\frac{\mu_{o}E}{v_{sat}}\right)^{\beta}\right]^{\frac{1}{\beta}}} \cong \begin{cases} \mu_{o}E & when E \to 0\\ v_{sat} & when E \to \infty \end{cases}$$ where v_{sat} is the saturation velocity E [V/cm] E [V/cm] #### Mobility μis the "mobility" of the semiconductor and measures the ease with which carriers can move through the crystal. [μ]= cm²/V-Second $$\mu_n$$ ~1360 cm²/V-Second for Silicon @ 300K $$\mu_p \sim 460 \text{ cm}^2/\text{V-Second for Silicon} @ 300\text{K}$$ $$\mu_n$$ ~8000 cm²/V-Second for GaAs @ 300K $$\mu_p \sim 400 \text{ cm}^2/\text{V-Second for GaAs} @ 300\text{K}$$ $$\mu_{n,p} = \frac{q\langle \tau \rangle}{m_{n,p}^*}$$ Where $<\tau>$ is the average time between "particle" collisions in the semiconductor. Collisions can occur with lattice atoms, charged dopant atoms, or with other carriers. Georgia Tech ## Resistivity and Conductivity Ohms Law States: $J=\sigma E=E/\rho$ where σ =conductivity [1/ohm-cm] and ρ =resistivity [ohm-cm] Adding the electron and hole drift currents (at low electric fields), $$J = J_p|_{Drift} + J_n|_{Drift} = q(\mu_n n + \mu_p p)E$$ Thus, $$\sigma = q(\mu_n n + \mu_p p) \text{ and } \rho = 1/[q(\mu_n n + \mu_p p)]$$ But since μ_n and μ_p change very little and n and p change several orders of magnitude: $$\sigma \sim = q\mu_n n$$ for n-type with n>>p $$\sigma \sim = q \mu_p p$$ for p-type with p>>n # Do not confuse Resistance and Resistivity or Conductance and Conductivity Resistance to current flow along length L (I.e. the electric field is applied along this samples length). $R=\rho L/A$ or in units, [ohm-cm][cm]/[cm²]=[ohms] ## Energy Band Bending under Application of an Electric Field Energy Band Diagrams represent the energy of an electron. When an electric field is applied, energies become dependent on their position in the semiconductor. If only energy E_g is added, then all energy would go to generating the electron and hole pair. \rightarrow No energy left for electron/hole motion. (I.e the electron only has potential energy, and no kinetic energy). If energy $E>E_g$ is added, then the excess energy would allow electron/hole motion. (Kinetic energy). KE of electrons = $E-E_c$ for $E>E_c$ KE of holes = E_v -E for $E < E_v$ ## Energy Band Bending under Application of an Electric Field "Elementary" physics says that... $$PE = -qV$$, where PE = potential energy, q=electron charge and V=electrostatic potential But we can also say that $PE = E_c - E_{arbitrary fixed Reference}$ or... $$V = -\frac{1}{q} \Big(E_c - E_{\it arbitrary fixed reference} \Big)$$ "Elementary" physics says that... $E = -\nabla V$ or $$E = -\frac{dV}{dx}$$ in one direction Thus, $$E = \frac{1}{q} \frac{dE_c}{dx} = \frac{1}{q} \frac{dE_v}{dx} = \frac{1}{q} \frac{dE_i}{dx}$$ If an electric field exists in the material, the conduction, valence and intrinsic energies will vary with position! ECE 3040 - Dr. Alan Doolittle ## Energy Band Bending under Application of an Electric Field ## **Band Bending** ### Diffusion Nature attempts to reduce concentration gradients to zero. Example: a bad odor in a room. In semiconductors, this "flow of carriers" from one region of higher concentration to lower concentration results in a "diffusion current". Figure 3.12 Visualization of electron and hole diffusion on a macroscopic scale. ## Diffusion Ficks law describes diffusion as the flux, F, (of particles in our case) is proportional to the gradient in concentration. $$F = -D\nabla \eta$$ where η is the concentration and D is the diffusion coefficient Derivation of Ficks Law at http://users.ece.gatech.edu/~gmay/ece3040 lecture #8 For electrons and holes, the diffusion current density (flux of particles times -/+q) can thus, be written as, $$J_p \mid_{Diffusion} = -qD_p \nabla p$$ or $J_n \mid_{Diffusion} = qD_n \nabla n$ Note in this case, the opposite sign for electrons and holes ## **Total Current** ## Since... $$\begin{split} J_p &= J_p \mid_{Drift} + J_p \mid_{Diffusion} = q \mu_p p E - q D_p \nabla p \\ and \\ J_n &= J_n \mid_{Drift} + J_n \mid_{Diffusion} = q \mu_n n E + q D_n \nabla n \\ and \\ J &= J_p + J_n \end{split}$$