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Recall: Carrier Movement Within the Crystal

LY . av
F:—qE:mnE F=qE=mpa
F = force, v = velocity, t =time, F = force, v =velocity, t =time,
g = electronic charge, q = electronic charge,
m_ = electron effective mass m, = hole effective mass

Table 2.1 Density of States Effective Masses at

300 K.

Material m¥* /m, ms Img
Si 1.18 0.81
Ge 0.55 0.36
GaAs 0.066 0.52

Ge and GaAs have “lighter electrons’ than Si
which results in faster devices
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Georgia Tech

Introduction to Quantum Mechanics

People RARELY get quantum mechanics on their first exposure.

Many aspects of quantum mechanics are counter intuitive and thus,
“visual learners” will likely have more trouble than those that tend to
think in the abstract.

We will introduce it now in hopes it will be easier the more you are
exposed to it.

Parts of this discussion are taken from:

Solymar and Walsh — Electrical Properties of Materials

Neudeck and Pierret — Advanced Semiconductor Fundamentals

Dimitrijev — Understanding Semiconductor Devices

Mayer and Lau — Electronic Materials Science

Colclaser and Diehl-Nagle — Materials and Devices for electrical engineers and physicists
Tipler — Physics for scientists and engineers V4.
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Introduction to Quantum Mechanics

To fully understand the origin of the energy bandgap and effective mass concepts as
well as future topics of energy states in quantum wells and tunneling currents, one
must have at least a basic understanding of electron motion in free space and in the
presence of other sources of electrostatic potential (atomic cores for example).

*This requires an understanding of the dual wave-particle nature of electrons and in
turn quantum mechanics.

*Consider the electron microscope:
Electrons have a charge and thus can be focused...

....but also have a phase and thus can interfere with each other destructively or
constructively  Electron Source h

V=—-r7
mA
6.6x107*Js

L= =31 -11
9.1x107°'kg x10™ meters

=7.25x10"m/s

(voltage used to focus electrons)

KE :%mu2 =qV

Deflection Plates t j
Thin sample

constructively and destructively interfere to get light
Georgia Tech and dark regions)

(spatially varied charge creates multiple ——§——— v 9.1x 10—31(7.25 X 1()7m/5)2 15.000 V =
phase delayed electron paths) :--_‘ = 2%x1.6x10°C =1, PR
Phosphor Screen & % _ ,
(converts electron energy to visible light — waves V. ,'-( 15KV gives sub atomic

resolution!
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Introduction to Quantum Mechanics

*What is the wavelength of macroscopic particles? Consider a bullet (1Tkm/s 1 gram)?

34
100om/s = &OAVTIS o 6107 m

1x107°kg x A

*Though it acts as a wave, it's wavelength is too small to ever measure/observe.

*S0 an electron (or every particle) acts as a wave AND a particle simultaneously.
How can we describe this?

Describe particles by a wave equation - Later...

*Other useful properties of “energy-particle waves”. E =hf = (Lj(zﬂf) = ficw = mc?

27
Or the momentum of the photon is...

hf
p=mC=—=

h
—=h —
cC A f®

p= % this 1s known as the de Broglie hypothesis

Where scalar, k, is known as the wave number. If momentum, P is expressed as a vector, K is
known as the wave vector.
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Introduction to Quantum Mechanics

[t

Why do we use “k” or “k” instead of “p” or “p”"?

k=27/A is independent of mass. Classically, p=mv. However, we will show that the
“mass”™ will change with crystalline direction allowing two parameters (m and v) to
change the momentum. Thus, k is simpler to consider.

*actually the effective mass is what changes with crystalline direction.
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Introduction to Quantum Mechanics VCA)G

In Quantum mechanics, the particle is described by a wavefunction, Y(x,y,z,t)

It is related to the probability of finding an electron at time t in a volume dxdydz.
Specifically, this probability is:

P(x,y,2,t) dxdydz or [‘P*‘dedydz]

But since Y is a probability,
I°° F Iw ¥(x,y,z,t) dxdydz = 1

or in 1D _O; [‘P*\de]:l

A
0.5
0.4
8
5 03
Ca
0.2 Introducing the concept of the wave
function. | (z)|*dz proportional to
0.1 the probability that the electron may
0.0 » be found in the interval dz at the
9 4 @2 3 4 - point z.
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Introduction to Quantum Mechanics — Operators and Observables

In Quantum Mechanics, physical observables are determined by applying an “operator” to the
wavefunction, . Operators “operate” on the wavefunction to determine what the physical
quantity is.

Since the Wavefunction is normalized, one can use the operator acting on the wavefunction to
determine the “most likely” or “expected” value of a variable.

Variable Operator to be Applied Expectation Value
position x PR X PR (x) = L‘P*x‘{’dv
h\o0 (h)Yo (h)O (h) o

momentum — =, | ==, | = |, o= ¥ |- |=—YdVv
Px Py Ps < (ij@x (ij&y (ljaz < (P L (ljax
Total Energy E > —(ﬁ)ﬁ >
| Jot
Random function f(x,y,z) < f(x,y,2) o (f(x y,z)>=L\P*f(x, y,2)PdV

Note that the normalization conditionis:1 = L‘P*‘Pdv
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Introduction to Quantum Mechanics - The Schrodinger equation

So how do we account for the wavelike nature of small particles like electrons?

Schrodenger Equation:

*There are NO physical assumptions available to “derive” the Schrédenger Equation!
It just happens to work as a model.

«Just like Newton’s law of motion, F=ma, and Maxwell's equations, the Schrodenger
Equation was proposed to explain several observations in physics that were previously
unexplained. These include the atomic spectrum of hydrogen, the energy levels of the
Planck oscillator, non-radiation of electronic currents in atoms, and the shift in energy levels
in a strong electric field.

Kinetic energy
“operator”

Energy
“operator”
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Introduction to Quantum Mechanics - solve the Schrodinger equation

To solve the Schrodinger equation one must make an assumption about the wave
function. Lets assume the wave function has separate spatial and temporal

components: (v P(x, Y, 2,t) = W(X, Y, 2)w(t)
Plugging this (*) into the Schrodinger equation and dividing both sides by (*) we arrive

at:
2 2
_h VLP_|.V :”';ll@
2m ¥ W ot

Since the left hand side varies only with position, and the right hand side varies only with
time, the only way these two sides can equate is if they are equal to a constant ( we will
call this constant, total energy, E). Thus, we can break this equation into two equations:

2 2
(—h V\P-|-V]:E E=ihl@

Consider first the time variable version (right side) then later we will examine the
spatially variable portion. This will give us time variable solutions and, later, a separate
spatially variable solution.

Georgia Tech ECE 3080 - Dr. Alan Doolittle




Introduction to Quantum Mechanics — Time variable solution

Consider the time variable solution:

E—in W
w ot
oW . E
—=—i—|w
2=

E

where E =7%w

w(t) = GHIEM or w(t) =gl

This equation expresses the periodic time nature of the wave equation.

Georgia Tech
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Introduction to Quantum Mechanics — Real Space Solution

Consider the space variable solution:

2 2
[_h V‘P+V]:E

2m ¥

hZ
(——vz +Vj\P - E¥Y
2m

N

HY = EY

momentum 1
“‘operator” | 4.

Kinetic _ Total
Energy Energy

Classically, momentum, p=mv and kinetic energy is (mv?2)/2 =(p?)/2m

Georgia Tech
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Introduction to Quantum Mechanics — Free Space Particle

Consider a specific solution for free space (no electrostatic potential, V=0) wave
solution (electron traveling in the +x direction in 1D only):

hZ
(——vz +Vj\P =E¥Y
2m
2 2
h— 0 T +E¥Y =0
2m OX
¥(x) = Ae™ + Be™
21,2
Wherekzz—ﬂ: 2sz orE:ﬂ
2m

Since we have to add our time dependent portion (see (*) previous) our total solution is:

¥ = P(X)W(t) = Ag (@) 4 Beiletk)
This is a standard wave equation with one wave traveling in the +x direction and one wave

traveling in the —x direction. Since our problem stated that the electron was only traveling in the
+x direction, B=0.

Important: An electron in free space turns out to be well described by a plane wave. As
we move forward, to electrons in other mediums, we will use “groups of” plane waves
(Fourier sums) and “modified plane waves” to describe the electrons in other mediums.
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Introduction to Quantum Mechanics - Uncertainty

An interesting aside: What is the value of A?

Since Y is a probability, - [ ]
P wdx (=1

(" Ae"™Aedx =1

Azeikx—ikxdx — 1

" Aldx=1

This requires A to be vanishingly small (unless we restrict our universe to finite size) and is the
same probability for all x and t. More importantly it brings out a quantum phenomena: If we
know the electrons momentum, p or k, we can not know it’s position! This is a restatement of
the uncertainty principle:

Ap AX 2 h

Where Ap is the uncertainty in momentum and Ax is the uncertainty in position

Georgia Tech ECE 3080 - Dr. Alan Doolittle




Momentum-Position Space and Transformations

There exists a set of equivalent wave functions, one in real space and one in momentum space that
can be used to describe the electron. They are related by Fourier transforms.

Position Momentum

Space Space

)= [o(pl™ iy (p)=

If LP(X) 1s normalized then so 1s (I)(p)

[ (¥ (ks = [ @ (pIo(phip =1

If a state is localized in position, X, it is delocalized in momentum, p. This leads us to a fundamental
quantum mechanical principle: You can not have infinite precision measurement of position and
momentum simultaneously. If the momentum (and thus wavelength from p=h/A) is known, the
position of the particle is unknown and vice versa.
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Momentum-Position Space and Transformations

'N”H]Wlmm”m..m,,_,‘ ‘

The above wave function is a superposition of 27 simple plane waves and creates a net wave function
that is localized in space. The red line is the approximate amplitude envelope (related to W*¥ — a
smoothed version). These types of wave functions are useful in describing particles such as electrons.
The wave function envelope can be approximated with a Gaussian function in space. Using the
Fourier relationship between space and momentum, this can be transformed into a Gaussian in
momentum. The widths of the two Gaussians are inversely related as shown on the next slide.
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Momentum-Position Space and Transformations

_b2 p2

#(p)=be >

The widths of the two Gaussians are inversely related (see variance with b? in each equations). Thus,
accurate knowledge of position leads to inaccurate knowledge of momentum.
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Introduction to Quantum Mechanics — Parabolic Energy-

Momentum Relationship
The solution to this free particle example brings out several important observations

about the dual wave-particle nature of our universe:
¥ = P(X)W(t) = Ae~ (4 )

*While particles act as waves, their charge is carried as a particle. l.e. you can only say that
there is a “probability” of finding an electron in a particular region of space, but if you find it
there, it will have all of it's charge there, not just a fraction.

*Energy of moving particles follows a square law relationship: B h2k? <p>2

_ _ 2m 2m
Neudeck and Pierret Fig 2.3
E E

3

A

» K

> <p>

Energy-momentum relationship for a free particle. Energy-momentum relationship for a free particle.

Classically, momentum, p=mv and kinetic energy is (mv?)/2 =(p?)/2m
Georgia Tech ECE 3080 - Dr. Alan Doolittle




Introduction to Quantum Mechanics

What effect does this “E-k” square law relationship
have on electron velocity and mass?

The group velocity (rate of energy delivery) of a

wave IS. dE 1 dE
Vy=—=———
do 7 dk
So the “speed” of an electron in
the direction defined by p is
found from the slope of the E-k
diagram. ENE

_— : E =
Similarly, since m

-1

d’E P
dk? e —

So the “effective mass” of an E—k diagram for a free electron with mass m (solid line) ind Iat'
i * Th bolic E—k di leads to a linear v versus k relation
electron is related to the local ~ Smaller mass, m'. The parabollc £k dlagram feads To & Tnear ¥

inverse curvature of the E-k
diagram
Georgia Tech After Mayer and Lau Fig 12.2 ECE 3080 - Dr. Alan Doolittle
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What effect does an electrostatic potential have on an electron?

Consider the electron moving in a constant electrostatic potential, V,. The wave
solution (electron traveling in the +x direction in 1D only):

2
(——vz +V}P: EY

2m
2 2
h 0 Lf+(E -V, ¥ =0
2m ox
¥(x)= Ae"™ +Be™
. 21,2
where k = o7 _ \/Zm(E2 Vo) orE = ﬂ+V0
A h 2m

Since we have to add our time dependent portion (see (*) previous) our total solution is:
¥ = P(X)W(t) = Ag (4 4 Beiletro)

This is, again, a standard wave equation with one wave traveling in the +x direction and one
wave traveling in the —x direction. Since our problem stated that the electron was only

traveling in the +x direction, B=0.

When the electron moves through an electrostatic potential, for the same energy as in

free space, the only thing that changes is the “wavelength” of the electron.
ECE 3080 - Dr. Alan Doolittle
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Localized Particles Result in Quantized Energy/Momentum:

Infinite Square Well

First a needed tool: Consider an electron trapped in an energy well with infinite potential barriers.
The reflection coefficient for an infinite potential is 1 so the electron cannot penetrate the barrier.

hZ
(——vz +v)t11= EY -
2m
2 2
LG SV
2m ox
2
0 Lf+k2\P:O
OX

General Solution : P(x) = Asin(kx)+ B cos(kx)

21,2
where k = 27 :1/2sz or E = 7k
A h 2m

Boundary Conditions :
Y(0)=0= B=0

Y(@)=0 = Asin(ka):O — k:n—ﬂforn:il,i2,i3...
a

n’z’h?

2ma’

NzX

Y (X)=A, sin(?) and E_=

Georgia Tech

NN
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Y

(b)

After Neudeck and Pierret Figure 2.4a
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Localized Particles Result in Quantized Energy/Momentum:
_ Infinite Square Well
What does it mean?

/—\ 2 232
LIJn(X) ' nd En:%
w 2ma

A standing wave results from
the requirement that there be a

node at the barrier edges (1.e. ST e i
BC’s: ¥(0)=W(a)=0). The T i T T
wavelength determines the - ‘. i

Wzﬁ?

energy. Many different possible AN

“states” can be occupied by the
electron, each with different P VW \
il

E (units of
1

1
i T T T

h
]

energies and wavelengths.

)¢S S

(© @ (&)

Figure 2.4  Particle in an infinitely deep one-dimensional potential well. (a) Spatial
visualization of the particle confinement. (b) The assumed potential energy versus position
dependence. (c) First four allowed energy levels. (d) Wavefunctions and (e) |i[* associated with
the first four energy levels. [y/[* is proportional to the probability of finding the particle at a given
point in the potential well.
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Localized Particles Result in Quantized Energy/Momentum:
Infinite Square Well

What does it mean?
Y, (x) = A, Sin(%j «(A
a

\_/,/

Solution for much larger “a”. Note: \
offset vertically for clarity. | —
~—, i o Recall, a free particle has E ~k2.
e T2 ° Instead of being continuous in k?, E is
(@) o . .
o 154 pfft??.e.. discrete in n?! I.e. the energy values
o \.q (and thus, wavelengths/k) of a
o vy S confined electron are quantized (take
\0.. S / on only certain values). Note that as
@ . .
‘*.,' the dimension of the “energy well”
\ / increases, the spacing between
I | ‘ ] . .
i, Sy an 0 4y i i discrete energy levels (and discrete k
Figure 2.5 Allowed infinite-well particle energy versus counterpropagating wave momentum Values) redUCCS. IIl the lnﬁnlte
(discrete points) referenced against the free particle E—(p) relationship. Crystal a COIltlIlquIl the Same as our
b
W free particle solution i1s obtained.

After Neudeck and Pierret Figure 2.5
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What about an electrostatic potential step?

Consider a moving electron incident on an electrostatic potential, V,. Find the wave
solution (1D only): V(x<0)=0 V(x>0)=V,

o ‘ V

(0]

Region | x=0 Region |l

We have already solved these in regions | and Il. The total solution is:

P =, (0w, (1) = A7)y B,e“(“’”k'x)
Py =Wy OO, (1) = Aye 4 4 B et

where k, _ 27 2rr12E and k, = 27 :\/zm(;—\/o)
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Warning!

The following is commonly taught in most undergraduate Quantum
Mechanics Courses but, strictly speaking is WRONG!!!!
Specifically, the boundary conditions used in the following analysis
are incomplete and one must apply the “probability density current”
concept, a more complex analysis to arrive at a complete solution for
the reflection and transmission coefficients. Due to the added
complexity, we will chose to teach you the less complex but not
exactly correct approach — a common practice for undergraduate
classes as It teaches the concepts without the math complications.
This neglects differing masses in regions as well as some other subtle
features. If you would like to learn the exact approach, see lecture 6
from Dr. Doolittle’s ECE 6451 graduate level Quantum Mechanics
class. The corrected values will be stated but not derived in this
class.

Georgia Tech ECE 3080 - Dr. Alan Doolittle




What about an electrostatic potential step?
o— V

(0]

cont'd... < >
: x=0 :
Region | Region |l

W, =W (0w, (1) = A4 4 B ek
¥, =%, Ow, (1) = A”e_i(wt_k“x) + B,,e_i(a’t+k"x)

where k, = 27 = 2;an and k, = 2 — \/zm(l;_vo)
' I

When the “wave” is incident on the barrier, some of it is reflected, some of it is
transmitted. However, since there is nothing at x=+« to reflect the wave back, B,=0.

Since y is a wave, both w and it’s first derivative must be continuous across the
boundary at x=0 for all time, t. Thus,

Y (x=0)="Y,(x=0) A +B, =A,

and ‘ and
ik, (

0¥, (x=0) _ 0¥, (x=0) A —B,)=ik, A,

OX OX
ECE 3080 - Dr. Alan Doolittle
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What about an electrostatic potential step?
o— V

(0]

cont'd... < >
AI + Bl = A” Region | x=0 Region Il

and
ikl (AI - BI ): iku An

LPI = LPI (X)WI (t) — Ale—i(a)t—k|X) 4+ Ble—i(a)t+k|x)
LIJII — \P“ (X)W“ (t) = A”e—l(a)t—k“x)

where k. = 2z _ |2mE - 27 _ \/Zm(E ~V,)
1|

| 2 h2
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What about an electrostatic potential step?

o » V

cont'd... 0

< >
Region | x=0 Region I

We can define a “reflection coefficient” as the amplitude of the reflected wave relative
to the incident wave,
BI kl - ku

And likewise, we can define a transmission coefficient as the amplitude of the
transmitted wave relative to the incident wave,

A, 2k
Ak +Kk,

R

The probability of a reflection is R*R while the probability of transmission is T*T

kI = iﬂ- = 2;:]2E and kH = iﬂ = ’2m(§2—V)
| ]

Georgia Tech
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What about an electrostatic potential step?

*— \Y/
Not deriving but using the more accurate ©
boundary condition described in the

“warning’,...

< >
Region | x=0 Region I

We can define a “reflection probability” as

R e

And likewise, we can define a transmission probability as

K, (A, AL)
k(A A)

T‘

Note that the R*R is the same but T*T is different.

kI = iﬂ- = 2;:]2E and kH = iﬂ = 2m(§2_v)
| ]

Georgia Tech ECE 3080 - Dr. Alan Doolittle




What about an electrostatic potential step?

*— V
cont’d... o
< L >
Region | =~ Region I X
Final details:
T*T — kn (An A;kl) and R*R — BI BI*
| AI AI* AI AI*
A 2k k 2k’ 2k
Since —- = L _and TT= H(* I*J( . ]
1 1 +kII kI kI +kII kI +kII
2
TT= 415“ 5 R'R = k, —ky
I 14 K k, +ky
1
TT+RR=1
K =2 [2ME gk, = 2T 2m(E2—V)
A, h A h
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What about an electrostatic potential step?

cont’d...

Consider 2 cases: Case 1: E>V

Both k; and k;; are real and thus, the particle travels as a wave of different wavelength in the two

regions.

However, R*R is finite. Thus, even though the electron has an energy, E, greater than V it will have a
finite probability of being reflected by the potential barrier.

If E>>V, this probability of reflection reduces to ~0 (k; = k)

O
A [k +ky|
o |4k 1 2
ki 1+ﬁ
kl

2—7[:1{2sz and kllzz_”: /2m(E2_V)
A h A h

Georgia Tech

VAVAVAVA

*—

Vv

Region | x=0

Region |l
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What about an electrostatic potential step?

cont’d...
Case 2: E<V

k; is real but ky; is imaginary. When an imaginary k;; is placed inside our exponential, ¢(%*, a decaying
function of the form, e-* results in region II.

Transmitted Wave Ay can be complex

A
r N\

P, = A et 2 p glkillg-io

However, T*T is now finite but evanescent. Evanescent waves carry no current (see homework). So
even though the electron has an energy, E, less than V it will have a finite probability of being found
within the potential barrier. The probability of finding the electron deep inside the potential barrier is ~0
due to the rapid decay of .

B, ‘2 :‘kl —i‘anz :Z_*Zl M
Al ik 2

*®

TT=0

R'R

Due to ] =0 < >

Transmitted ~

Region I x=0 Region II

=20 ME gy, 2 [PEY)
Georgia Tech A h Ay h ECE 3080 - Dr. Alan Doolittle




What about an electrostatic potential step?

Without proof, consider the following potential profile with an electron of energy E<V,.

< 4
: x=0 x=a X
Region |

Region |

The electron has a finite probability to “tunnel” through the barrier and will do so if the barrier is
thin enough. Once through, it will continue traveling on it's way.

Georgia Tech ECE 3080 - Dr. Alan Doolittle




What about an electrostatic potential step?

Consider the following potential profile with an electron of energy E<V..

I ZII /IIII ,

<{ TNV
=2 W\N\ - B

<

x=0 x=a X

Region | _ Region III
Region 11

The electron has a finite probability to “tunnel” through the barrier and will do so if the barrier is thin
enough. Once through, it will continue traveling on it’s way.

Georgia Tech ECE 3080 - Dr. Alan Doolittle




What about an electrostatic potential step?

Consider the following potential profile
with an electron of energy E<V..

Incident Wave Reflected Wave from x=0

A A

LPI :{Ae—i(ax—klx)\+ ée—i(a)wklx)

\

+x Wave Region Il Reflected Wave from x=+a
A A

T,, :rCe—i(ax—kzxY+ E)e—i(a)t+k2x)\

Transmitted Wave
A

| Failetkx)
. —i(awt—k;x
LIJIII o Fe
Energy is conserved across the boundary so,
21,2 21,2
LS wk;
2m 2m
K :2_7z: 2mE and k :2_7z: 2m(E -V)
YA n ) n’

Georgia Tech

E-V

0]

_
E>Vo <

.
o

E<Vo <

<

I ﬂ‘l /IIII

> b ¢ >

i
MR

AAL

x=0 x=a

Region III
Region II

Region I
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Ulx) Kronig-Penney Model

UO T : ‘ ‘ :
= R

0+ ‘ w | —

Resonant reflectance/transmission creates “standing waves” in the crystal. Only
certain wavelengths (energies) can pass through the 1D crystal.

By analogy, a multiple layer optical coating has similar reflection/transmission
characteristics. The result is the same, only certain wavelengths (energies) are
transmitted through the optical stack. In a since, we have an “optical bandgap”.

J 1T 0

z

%

40~

Transmittance (%o)

20+

|
' i | |
200 400 600 800 1000 1200 1400

Wavelength (nm)
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Now consider an periodic potential in 1D
Kronig-Penney Model: Bloch Functions Explained

Since each unit cell is indistinguishable from the next, the probability of finding an
electron in one unit cell is identical to that of finding it in an adjacent unit cell.

The Bloch theorem states that since the potential repeats every “a” lengths, the
magnitude of the wavefunction (but not necessarily the phase) must also repeat every
“a” lengths. This is true because the probability of finding an electron at a given point

in the crystal must be the same as found in the same location in any other unit cell.

Georgia Tech ECE 3080 - Dr. Alan Doolittle




To achieve

Now consider an periodic potential in 1D
Kronig-Penney Model: Bloch Functions Explained

this property, the MAGNITUDE of the wavefunction (but not necessarily the wavefunction) must have

the same periodicity as the lattice. Thus, we choose a wavefunction that is modulated by the periodicity of the

lattice.

Since V(r +a) = V(1)

we choose plane waves modulated by a periodic function,

¥(r) =e™u_ (r) where u_ (r) = u_ (r + a)

Thus,

Y(r+a)=u,(r+a)e

The wavefunction in one unit cell is
merely a phase shifted version of the
wavefunction in an adjacent unit cell.

ik(r+a)

¥(r+a)=e™ [unk (r)eﬂ“] = ¢"*W¥(r) or merely a phase shifted version of P(r)

Thus,

P r+a)Pr+a)=e™¥ ()P =¥ (r)¥()
Thus, by using this Bloch Function choice for the wave function, the probability of finding an
electron in one unit cell is identical to that of finding it in an adjacent unit cell — as expected.

Georgia Tech
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An Important Aside: Effect of Bloch Functions

Assuming a large number of unit cells in a material, N, the boundary condition for the system is Na
translations must result in the wavefunction being translated to return to itself? (The probability at the
material edges must be symmetric and equal).

Y (x + Na) = "™ ¥(x) = ¥(x)
Thus,
e"™ = 1 so taking the Nth root,

oika _ 1(%\1) (ein27r )(%\1) e(inZI%\')

ka = (1127%\')

So the allowed states of k are :

2rn
Na

k =

Thus, if N (the number of unit cells available) is very large, like in a semiconductor, the spacing between the
allowed k-values (kn=2-kn=1 etc... are almost continuous, justifying the treatment of the k-states as a

continuum. _
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Now consider an periodic potential in 1D
Kronig-Penney Model

(a)
Consider what potentials an electron would see as it moves
through the lattice (limited to 1D for now). The electrostatic
potential, V(x) is periodic such that V(x+L)=V(x).

-
0 Atomic core (+Z'q)
U(x)

The Bloch theorem states that since the potential repeats
every “L” lengths, the magnitude of the wavefunction (but not
necessarily the phase) must also repeat every “L” lengths.
This is true because the probability of finding an electron at a
given point in the crystal must be the same as found in the
same location in any other unit cell.

(®)

U(x)

The wavefunction in one unit cell is

Since V(x + L) = V(x) merely a phase shifted version of
. the wavefunction in an adjacent
kL
Y(x+L)=e""VY(X) <—.unitcel ©

Y (x+L)¥Yx+L)=e™¥ x)e"¥Y(x) =¥ x)¥(x)

.

U(x)

We MUST have standing waves in the crystal that have a
period equal to a multiple of the period of the crystal’s
electrostatic potential. (Similar to a multilayer antireflection
coating in optics)

It is important to note that since, the wavefunction repeats

AVAVAVAERVA

each unit cell, we only have to consider what happens in one @
unit cell to describe the entire crystal. Thus, we can restrict (a) One-dimensional crystalline lattice. (b-d) Potential energy of an electron inside
ourselves to values of k such that —r/a to +r/a (Implylng ka the lattice considering (b) only the atomic core at x = 0, (c) the atomic cores at both x = 0 and

x = a, and (d) the entire lattice chain.

<1 or (2n/L)a<1)

Georgia Tech After Neudeck and Peirret Fig 3.1 ECE 3080 - Dr. Alan Doolittle




Now consider an periodic potential in 1D
Kronig-Penney Model

Assumptions of Kronig-Penney Model:

*Simplifying the potential to that shown Ux)
here:

1D only AARTATATATA TS

*Assume electron is a simple plane

wave of the form, U)
eikx ‘
Uy T I I I I I
...modulated by the periodic —U l_l U U U U H_
crystalline potential, U(x) o
*The crystalline potential is periodic, oo ®)

U(X)=U(X+I—) Figure 3.2  Kronig-Penney idealization of the potential energy associated with a one-
) ] ] dimensional crystalline lattice. (a) One-dimensional periodic potential. (b) Kronig-Penney

*Thus the wave function is a simple model.

plain wave modulated by the periodic

crystalline potential:

¥ (x) = U(x)e™

Georgia Tech Neudeck and Peirret Fig 3.2 ECE 3080 - Dr. Alan Doolittle




Kronig-Penney Model

For O<x<a:

0

h2
(——vz +¥ ¥ =E¥Y
2m

o*Y
OX*

+a’¥ =0

2mE

hZ

where o =

. =

W, (X) = Asin(ax) + B cos(ax)

Georgia Tech

For -b<x<0:

2
[——vz +VJ‘P - E¥Y
2m

RN 4
Ox>

B = i\/zm(iz_u") forE> U,
2mU, - E)
B = 3 for0O<E<U

. =

WY, (X) = Csin(fSX) + D cos(X)

+ /Y =0

0
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Kronig-Penney Model

For -b<x<0:

W, (X) = Csin(fX) + D cos(X)

For O<x<a:

Y, (X) = Asin(ax) + B cos(ax)

Applying the following boundary conditions:

(%) =F, (%)

d¥, (0| _ d¥,(x)
dx dx

x=0

x=0

—

: ~
¥ (x=a)=e""¥Y (x = -b)

d'¥, (%)
dx

_ eik(a+b) dlPb (X)
dx

X=—bh

X=a

Georgia Tech

BC for continuous

> wave function at the

boundary

BC for periodic wave
> function at the
boundary

-
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Kronig-Penney Model

Applying the boundary conditions, we get:
B=D
oA = [C
Asin(ca) + B cos(ca) = €*@™ [~ Csin(fb) + D cos(Sb)]
aAcos(ca) + aBsin(ea) = e[ AC cos(Lb) + D sin(Ab)]

Eliminating the variables C and D using the above equations, we get:

A{sin(aa) + (%jeik(a”’) sin( ,Bb)} + B[cos(aa) — @) cog( ﬂb)] =0

A[a cos(ca) — o™ @™ cos(ﬂb)]+ B[— asin(ca) — fe @ sin(,Bb)] =0

This equation set forms a matrix of the form:
w X[ A 0
y z|B o

A and B are only non-zero (non-trivial solution) when the determinate of the above
set is equal to zero.
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Kronig-Penney Model

Taking the determinate and simplifying we get:

_ (%j sin(aa) sin( A0) + cos(aa) cos(Sb) = cos(k(a + b))
Q

Plugging in the definitions for o and  we get:

Function of k and

_ constrained to
constrained. <t+/- 1

Y, sin(a1/2m8°\/Ejsin bwfﬁ (E—lj +cos(a 2mtJ° \/E]cos b 2m§J° [E—lj t cos(k(a+b)) forE> U,
/E[E_IJ h U, 7\, V7 \u, Ve L,
U, (Y,

Function of Energy and not

E
U, sin a1/2m8° £ sinh bwfﬁ 1—E +cos aJ% £ cosh b1/2m80 1—E Hcos(k(a+h)) for0<E< U,
E E h U, h U, h U, h U,
2= l1-—
UO UO

The right hand side is constrained to a range of +/- 1 and is a function of k only. The limits of
the right hand side (+/- 1) occurs at k=0 and +/- z/(a+b) where a+b is the period of the
crystal potential. In other words, the min and maximum occur at k values corresponding to
the center and edge of the “reciprocal lattice” (k-space version of real lattice).

dhgleftnand side is NOT constrained to +/- 1 and is a function of energy onl¥: 3050 _ pr. Alan Doolittie




Kronig-Penney Model

The right hand side is constrained to a range of +/- 1 and is a function of k only. The limits of
the right hand side (+/- 1) occurs at k=0 to +/- n/(a+b).

The left hand side is NOT constrained to +/- 1 and is a function of energy only.

0 Within these “forbidden energy
ranges”, no solution can exist (i.e.
electrons can not propagate.

zan

Various “Bands or allowed energy” exist
where the energy E is a function of the
choice of k (see solution equation)

Left or Right hand side of Kronig-Penney Solution
(=]

Graphical determination of allowed electron energies. The left-hand side of the
Eqgs. (3.18) Kronig-Penney model solution is plotted as a function of ¢ = E/U,. The shaded
regions where —1 = f(¢) = 1 identify the allowed energy states for the specific case where,

2mu, 2mu,
a 2 =D e =7
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Kronig-Penney Model

Replotting the previous result in another form recognizing the lower k limit 1s shared by + and —
n/(a+b) while the upper limit is for k=0.

There are at most 2 k-values for each allowed energy, E

The slope, dE/dK is zero at the k-zone boundaries at k=0, k= — n/(a+b) and k= + n/(a+b) Thus we
see that the velocity of the electrons approaches zero at the zone boundaries. This means that the

electron trajectory/momentum are confined to stay within the allowable k-zones.
E

| 7
7
é
r
7
/ Band 3
/ é
/\ % Band 2
l\_/ #7Z2 Band 1

Graphical determination of allowed electron energies. The left-hand side of the
Eqgs. (3.18) Kronig-Penney model solution is plotted as a function of £ = E/U,. The shaded ™ 0 T
regions where —1 =< f(¢) = 1 identify the allowed energy states (apa = agh = 7). a+b a+b

>k

Figure 3.5 Reduced-zone representation of allowed E-k states in a one-dimensional crystal

Note: k-value solutions differing by 2n/(a+b) are indistinguishable
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Kronig-Penney Model

Replotting the previous result in another form ...

Free Space E-k
diagram

N

A

Band 4

—_
=
o
=
(=%
rJ

ZA Band 1

“3n/(atb) —2n/(atb) —m/(atb) O

n/(a+b) 2m/(atb) 3m/(atb)

4+—r < > P> ¢——>
31 2nd 1%t Brillion 2né 3d
Brillion Brillion 7Zone Brillion Brillion
Zone Zone Zone Zone

Note: k-value solutions differing by 2m/(a+b) are indistinguishable. Also

due to animations printed version does not reflect same information.
Georgia Tech

The presence of the
periodic potential
breaks the “free space
solution” up into
“bands” of
allowed/disallowed
energies. The
boundaries of these

bands occurs at
k=+m/(a+b)
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Now consider an periodic potential in 1D
Kronig-Penney Model

[NV

Visualization of a conduction band electron moving in a crystal.

After Neudeck and Peirret Fig 4.1
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Now consider the 3D periodic potential in a cubic crystal

Different potentials exist in
different directions

*Electron wavelength and crystal
momentum, k=2r/A, differs with
direction

*Many different parabolic E-k
relationships exist depending on
our crystalline momentum

Q 7 3,( :

Crystal I\/_l_omentum,Space

http://britneyspears.aé‘/'brﬁ-ysics/dos/dos.htm
Georgia Tech

Zinc blende
X-valleys
300K
Cubic GaN E,=32eV
EX Ex =46¢eV
ES
) L
<100> E,] <100>

Split-off band
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Zinc blende Energy T J i ; \&
2 — iy

Now consider the 3D periodic potential in a cubic crystal

" Ge s \ [GaAs \

4 - -

th

ey
. L-vall * L i\ i B E
X-valleys valieys x 1 1 = 3 E, Eg
\ : 0 T(J Fv d EV { E
i _ 300 K -1} . s
Cubic GaN Eg=32¢cV LF i i
[-valley E | Ex=46¢eV
Ey = E =48-51¢eV 3| g .
- Eq=0.02 eV »
0 L {11y r (100) X L (111) T (100) X L (111) © 100y X
3 . k (wave vector)
<100> E, \Heavy holes  <l11> (a) (b) (c)
Light holes
Split-off band
3 T=300K
*All equivalent directions give redundant information and
thus are not repeated 21 L
*Most important k-space points z 1 ’
SEENE 171 eV
« ["-point is the center of crystal momentum space (k- <
space) at k=0 o (vi) Loy LI 1e,
Heavy holes B
« X-point is the edge of the first Brillouin zone (n/L oy wshev
edge) of crystal momentum space (k-space) in the - S

<100> direction L A T A X

k (wave vector)
* L-point is the edge of the first Brillouin zone (w/L @

edge) of CryStal momentum space (k_Space) in tiigure 3.13  (100)/(111)E-k diagrams characterizing the conduction and valence bands of
(a) Ge, (b) Si, and (c, d) GaAs. [(a—c) after Szel’; (d) from Blakemore.") Reprinted with

<111> direction permissien.] Neudeck and Peirret Fig 3.13
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Now consider the 3D periodic potential in a hexagonal crystal

Wurtzite 'En ergy 10 —
' | / GaN 5 </\ 1
KRS
A-valley M-L-valleys 6 —/\” Z /\3
s 1.3‘3'4%37?“ ‘
300K ‘ |
- L Ee= 339eV . :
. | Tovalley B eds-53ev ‘" Full Band|Diagram
Al E W Bu= 47-35eV w Op N~ s
: 8 En= 0.008 eV : - 3
. — 2+ 13 3
- 0 | Bom 0046V &, \
k E = Heavy holes k, L ; 1 z
: Light holes Al , \ :
. 1 4/\3 y 3
Split-off band A R LU M T TraA 5 HPK 1 T
Kk
z
( AbS R L
Y :
o
= r_ k
M
P A y

Crystal Momentum Space

Suzuki, M, T. Uenoyama, A. Yanase, First-principles calculations of effective-mass parameters of AIN and GaN, .
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Where are the electron trajectories/momentum vectors in the crystal?

— oy,
- -~

— gy,

e
N
-~ 1 GaAs
/”
-
£

s 2 e < ;ﬁ
% 7 E
‘Tl’ (:ﬁ-\ &, B EG._I} ~ Ec T
] ?3 E, f E, i E,
-1+ L - \,J\
—-2F ‘ - \ -
-3k L \ - I
' \ :
L @hr d x LT (0o x Lo © (100) X
\ k (wave vectq) ‘ GaAs
@ N\ (b) @l
S \ \ ©

\
\

_\~Valence Band E-k
~ and constant _ -~
e energy surfaces
all look similar

E—E,(eV)

=3

Heavy holes

Light holes
(V2) 0.34eV

Split-off band
(V3)

and x valleys? What does this im
* for “electron transfer devices”?

@ Constant-energy surfaces characterizing the conduction-band structure in (a, d)
Ge, (b) Si, and (c) GaAs. (d) Shows the truncation of the Ge surfaces at the Brillouin-zone

L A r A
k (wave vector)

Figure 3.13  (100)/(111)E-k diagrams characterizing the conduction and valence bands of
(a) Ge, (b) Si, and (c, d) GaAs. [(a—) after Szel’); (d) from Blakemore.'!! Reprinted with

permission.] Neudeck and Peirret Fig 3.13

Georgia Tech

boundaries. [(a—c) after Sze!”) and Ziman®; (d) from McKelvey.*! Reprinted with permission; the
latter from Robert E. Krieger Publishing Co., Malabar, FL.]
Neudeck and Peirret Fig 3.14
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Appendix to Lecture

A Review of the Properties of Waves
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Properties of Waves
Classical Mechanics describes the dynamical* state variables of a particle as

X,Y,z,p, etc..

Quantum Mechanics takes a different approach. QM describes the state of
any particle by an abstract “Wave Function”, ¥( x, y ,z ,t ), we will describe in
more detail later.

Thus, we will review some properties of waves.

*There are also classical static variable such as mass, electronic charge, etc... that do not change during physical processes.
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Properties of Waves

As waves are important in Quantum Mechanics, it is worth re-examining
some properties of waves.

1) Generality of Waves and Superposition: Any complex wave or shape of
any kind can be decomposed into a set of orthogonal plane waves using a
Fourier Series. (Same as in signal processing).

— oot W
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Properties of Waves

2) Phase Velocity: Given a wave of the form,

P(x,t)= Ae't
Points of constant phase can be found by the followingj relationship:

w
kx —@wt =constant or X:(Et

Thus, we can differentiate this equation to find the phase velocity (speed of

propagation) of the wave dx o

V = — =
phase d { k

Points of constant phase

Time=t, Time=t,>t,
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Properties of Waves

3) Group Velocity: Any combination of waves can result in a complex wave
through superposition. This complex wave moves in space.

P(x,t)= Aj g(k e *-dk
Consider a simple sum of two cosineoofunctions:
¥(x,t) = Acos(k,x — @, t)+ Beos(k,x — @, t)
Defining o as the average of ®, and o,
and k as the average of k, and k,,
0, =0—-Ao and 0, =0+ Ao
k, =k—-Ak and k, =k+ Ak
P(x,t)=2Acos(@ t - kx)cos((Aw )t - (Ak)x)

0 0 180 200

- Y gl
ngh Frequency Low Frequency Addition of two waves of slightly different frequency
“Carrier” “Signal”

If ®, and w, are similar, Am<<w and thus the slowly varying group (relative to

the quickly varying *“carrier’) has a “group velocity” of:
do
VGroup - d—k

@ : s -
Vo = —— — and in the infinitesmal limit =
_dE _1dE _hde da
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