
ECE 4813 Dr. Alan Doolittle 

ECE 4813 
 

Semiconductor Device and Material 
Characterization 

Dr. Alan Doolittle 
School of Electrical and Computer Engineering 

Georgia Institute of Technology 
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found within the class text, Semiconductor Device and Materials Characterization.  Every serious 
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Graphs and Plots 
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 When two variables, e.g., resistivity and doping density, vary 
over many orders of magnitudes (decades) it is best to plot 
log - log 
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Graphs and Plots 
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Plotted on a Log Scale then Analyzed 

Take Log 1st then Plotted and Analyzed 

Plotted on a Linear Scale – Cannot be Analyzed 
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Graphs and Plots: Example 
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Taking Natural Log Scale makes Analysis easier 
but makes scales hard to read.  Data is almost 

always presented in a Log10 basis. 



ECE 4813 Dr. Alan Doolittle 

Kelvin Measurements 
 Kelvin measurements refer to 4-probe measurements 
 Two probes: 

2RProbe+2RContact+2RSpreading 

 Four probes: 
RSemicond 

V
I I

RProbe

RContact

RSpreading

Current

I IV

RSemicond
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Four Point Probe 
 The four point probe is 

used to determine the 
resistivity and sheet 
resistance 

s t 

I I 
V 
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Four Point Probe 
 Derivation of the basic four point probe equation 
 Assumption: Current flows out radially from infinitesimal 

probe tip I

P
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Four Point Probe 
 For four in-line probes 
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Four Point Probe 
 Since wafers are not infinite 

in extent, need to correct for 
 Conducting/non-conducting   

bottom boundary 
Wafer thickness 
 Nearness to wafer edge 
Wafer size 

 For non-conducting bottom 
surface boundary 
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F=F1F2F3 
• F1 corrects the sample 

thickness 
• F2 corrects the lateral 

dimensions (F2 ~1if wafer 
size is ~40 times S) 

• F3 corrects the probe to 
edge (d) placement errors 
(~1 if d>2S) 
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Resistivity 
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Thin Layers 
 Consider a thin film on an insulator 

Metal layer on insulator 
Poly-Si layer on insulator 
n on p or p on n 

Usually t<<s 

Recall sinhx ≅ x for x <<1 
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What Is Sheet Resistance? 
 The resistance between the contacts is 

 
 
 
 

 L/W has no units 
 ρ/t should have units of ohms 
 But . . . R ≠ ρ/t ! 
 Sheet resistance Rsh = ρ/t  (ohms/square) 

 
 

 Resistance independent                                
of the size of the square 
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Sheet Resistance 

 Frequently you do not know t. 
 Ion implanted layer 
Diffused layer 
Metal film 
Poly-Si layers 

 Define sheet resistance Rsh 
 For uniformly-doped layer 
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Dual Configuration (or Switched 
Configuration) 

 Measurement 1:  Current in 1 & out 4 and voltage 
measured on 2 and 3.  Directions then reversed. 

 Measurement 2: Current in 1 & out 3 and voltage 
measured on 2 and 4.  Directions then reversed. 

 Advantages: 
Probes can be oriented in any direction (no need to be 

parallel or perpendicular to the wafer radius or edges) 
Lateral dimensions no longer needed 
Self-correcting for changes in probe spacing 
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Wafer Mapping 
 
 



ECE 4813 Dr. Alan Doolittle 

Wafer Maps 
 Measure sheet resistance; generate and plot 

contour maps (lines of equal sheet resistance) 
 

Si-doped Al 
Rsh,av = 80.6 mΩ/square 

1% Contours 

Epitaxial Si 
Rsh,av = 18.5 kΩ/square 

1% Contours 

 

B-implanted Si 
Rsh,av = 98.5 Ω/square 

1% Contours 
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Sheet Resistance 
 For non-uniformly doped layers 
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Sheet Resistance 
 Sheet resistance Rsh depends on the total number of 

implanted or diffused impurities and on the layer thickness 
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van der Pauw Measurements 
 Instead of a four-point probe, one can use an 

arbitrarily shaped sample 
 Current flows through two adjacent contacts 
 Voltage is measured across the other two contacts 
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van der Pauw Measurements 
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Precautions 
 For copper metallization barrier layers are used to prevent 

Cu from diffusing into SiO2 or Si 
 Barrier layers have negligible effect on sheet resistance Rsh 

measurement of thick conductor films  
 Chemical-mechanical polishing (CMP) dishing does affect 

Rsh measurements 

Copper 

Barrier 
Metal 

t 

tRsh /ρ=
CMP Dishing 

T. Turner, “Cu-Linewidth Resistivity Measurements,” Solid State Technol. 43, 89-96, April 2000  
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Line Width 
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Anodic Oxidation / van der Pauw 
 Place wafer into electrolyte 
 Apply constant current, measure voltage 
 Oxide grown anodically at room temperature 
 Oxide growth consumes Si 
 When oxide is etched, Si is removed 
 Measure sheet resistance 

n p 

SiO2 
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Anodic Oxidation / van der Pauw 
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Eddy Current - Contactless 
 An oscillating circuit induces time-varying magnetic fields 

leading to eddy currents in the wafer ⇒ resulting loss is 
proportional to the sheet resistance Rsh 
 Sheet resistance 
 Conductor thickness: t = ρmetal/ Rsh, measure metal sheet 

resistance Rsh, know metal resistivity ρmetal 

t 

ρsemicond 

ρmetal 
Drive Coil 

Eddy Currents 
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Four Point Probe / Eddy Current 

Rsh,av = 3.024x10-2 Ω/square 
Std. Dev. = 1.459% 

 

Four Point Probe: 

Eddy Current: 

Rsh,av = 3.023x10-2 
Ω/square 

Std. Dev. = 1.413% 
 

Figures courtesy of  
W. Johnson, KLA-Tencor 

1 µm  
Aluminum 

 

Rsh,av = 62.904 Ω/square 
Std. Dev. = 2.548% 

 

Rsh,av = 62.560 Ω/square 
Std. Dev. = 2.94% 

 

200 Å  
Titanium 
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Modulated Photoreflectance 
 Pump laser heats semiconductor locally ⇒ small reflectivity 

change of the wafer ⇒ measured by the probe beam 
 Ion-implanted samples: 

 No post-implant annealing required 
 Signal ~ implant dose 
 High spatial resolution (few µm) 
 Can measure implanted patterns 
 Bare and oxidized wafers 
 Non-contact, non-destructive 

 

http://www.thermawave.com 

…also known as ThermaWave 

Detector

Probe
Laser

Pump
Laser

Sample

Therma
Wave
Signal

Damaged
Layer
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Modulated Photoreflectance 

B in Si, 30 keV, 8x1010 cm-2, contour intervals: 1% 

Courtesy A.M. Tello, Xerox Microelectronics Center 
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Conductivity Type 
 Hot Probe 

 
 

Where vth is the thermal velocity of the 
carrier 
 Electrons move away from hot probe 
 Positive donor ions left behind 
 For n-type: Vhot > 0 
 For p-type: Vhot < 0 

 

 Thermoelectric power 
 
 

 When you are at ~open circuit (i.e 
measuring voltage) 
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Pn is differential thermoelectric power (<0) 

n-type

ColdHot

V

I

ND
+

Ec

Ei

Ev

EFn

Vhot

T
m
kTvth ~

*
3

=



ECE 4813 Dr. Alan Doolittle 

Warnings 
 Hot Probe - Warnings: 

 Works for ~10-3 to ~103 ohm-cm 
 Above ~103 ohm-cm, p-type will likely read as n-type (due to you actually 

measuring nµn and pµp not n and p) 
 High resistivity materials need very high input impedance voltmeter 

(electrometer type). 
 

 Resistivity Warnings: 
 Watch out for surface depletion 

 Especially serious in compound semiconductors 
 Thermal variations due to drive currents 

 Follow NIST standards for power levels 
 Fermi-level pinned surfaces (InN for example) 
 Whenever possible, keep drive voltages small (V<kT/q) so contact non-

linearities are not important.  Otherwise CHECK CONTACT LINEARITY! 
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Review Questions 
 What is the best way to plot power law data? 
 What is the best way to plot exponential data? 
 Why is a four-point probe better than a two-point probe? 
 Why is resistivity inversely proportional to doping 

density? 
 What is an important application of wafer mapping? 
 Why is a four-point probe better than a two-point probe? 
 Why is sheet resistance commonly used to describe thin 

films? 
 What is the main advantage of Eddy current 

measurements? 
 What are advantages and disadvantages of the modulated 

photoreflectance (therma wave) technique? 
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