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Solar Cells
XXXX.

’ ‘ ‘ ‘ ‘ Why do the
electrons flow

’ ‘ ‘ ‘ ‘ when light is
present but not

. ‘ ‘ ‘ ‘ flow when light

1S not present?

Answer, Energy
Bandgap (very
important
concept).
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Classifications of Electronic Materials

4 N shell -
3 M Shell
/‘ 2 L Shell
1
N\ : K Shell
o \ | \[ \ Positively
chargeil )
/ Hucleus O
K
L
1]
N -

Example: Silicon n=1 (2 s), n=2 (2 s and 6 p) and n=3
(2 s and 2 p with 4 unoccupied p states)

*Atoms contain various “orbitals”, “levels” or “shells” of electrons labeled as n=1, 2, 3, 4, etc... or
K, L, M, or N etc... The individual allowed electrons “states” are simply allowed positions
(energy and space) within each orbital/level/shell for which an electron can occupy.

*Electrons fill up the levels (fill in the individual states in the levels) from the smallest n shell to
the largest occupying “‘states” (available orbitals) until that orbital is completely filled then going
on to the next higher orbital.

*The outer most orbital/level/shell is called the “Valence orbital”. This valence orbital si the only
one that participated in the bonding of atoms together to form solids.
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Classifications of Electronic Materials

Materials with built in
static dipoles result
from partially or fully
ionic (polar) bonds

Materials free from
built in static

dipoles result from
covalent bonds

*Solids are formed by several methods, including (but not limited to) sharing electrons (covalent bonds) or by
columbic attraction of ions (fully ionic) or partial ionic attraction / partial sharing of electrons (partially ionic)
*The method for which the semiconductor forms, particularly whether or not a fixed static di-pole is constructed
inside the crystal, effects the way the semiconductor interacts with light.

Later we will see that covalent bonds tend toward “indirect bandgap” (defined later) materials whereas polar
bonds (ionic and partially ionic) tend toward “direct bandgap” materials.
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Classifications of Electronic Materials

Valence Electrons
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*Only the outermost core levels participate in bonding. We call these “Valance orbits” or “Valence Shells”.

*For metals, the electrons can jump from the valence orbits (outermost core energy levels of the atom) to any position within
the crystal (free to move throughout the crystal) with no “extra energy needed to be supplied”. Thus, “free conducting
electrons are prevalent at room temperature.

*For insulators, it is VERY DIFFICULT for the electrons to jump from the valence orbits and requires a huge amount of
energy to “free the electron” from the atomic core. Thus, few conducting electrons exist.

*For semiconductors, the electrons can jump from the valence orbits but does require a small amount of energy to “free the
elecggg}’éit:{qigmhe atomic core, thus making it a “SEMI-conductor”. ECE 4833 - Dr. Alan Doolittle
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Classifications of Electronic Materials
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*Since the electrons in the valance orbitals of a solid can have a range of energies and since the free conducting electrons can
have a range of energies, semiconductor materials are a sub-class of materials distinguished by the existence of a range of
disallowed energies between the energies of the valence electrons (outermost core electrons) and the energies of electrons
free to move throughout the material.

*The energy difference (energy gap or bandgap) between the states in which the electron is bound to the atom and when it is
free to conduct throughout the crystal is related to the bonding strength of the material, it’s density, the degree of ionicity of
the bond, and the chemistry related to the valence of bonding.

*High bond strength materials (diamond, SiC, AIN, GaN etc...) tend to have large energy bandgaps.

Lowestpim@estiength materials (Si, Ge, InSb, etc...) tend to have smaller energy bandgaps. ECE 4833 - Dr. Alan Doolittle




Classifications of Electronic Materials

*More formally, the energy gap is
derived from the Pauli exclusion
principle, where no two electrons
occupying the same space, can
have the same energy. Thus, as
atoms are brought closer towards
one another and begin to bond
together, their energy levels must
split into bands of discrete levels
so closely spaced in energy, they
can be considered a continuum of
allowed energy.

Strongly bonded materials tend to
have small interatomic distances
between atoms. Thus, the strongly
bonded materials can have larger
energy bandgaps than do weakly
bonded materials.
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Material Classifications based on Bonding Method

Bonds can be classified as metallic, Ionic, Covalent, and van der Waals.
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Ionic Bonding: One atom acquires and holds Covalent Bonding: Atoms share electrons with the  Metallic Bonding: Atoms give up electrons to the surrounding
the electron(s) of an adjacent atom. Bonding surrounding atoms. Bonding is moderately weak. regions, forming an “electron cloud”. Bonding is coulombic
is coulombic and strong. but weak due to screening of charge.

Van der Waals Bonding: Neutrally charged molecules form
dipoles which are attracted to other dipoles. Bonding is
extremely weak, but long chains can form.
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Consider the case of the group 4 elements, all** covalently bonded
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Classifications of Electronic Materials

Types of Semiconductors:
*Elemental: Silicon or Germanium (Si or

Ge)

*Compound: Gallium Arsenide (GaAs), Indium Phosphide (InP), Silicon Carbide

(S1C), CdS and many others

*Note that the sum of the valence adds to 8, a complete outer shell. 1.E. 4+4,
3+5, 246, etc... PERIODIC TABLE OF THE ELEMENTS
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Classifications of Electronic Materials

Compound Semiconductors: Offer high performance (optical characteristics,
higher frequency, higher power) than elemental semiconductors and greater
device design flexibility due to mixing of materials.

Binary: GaAs, SiC, etc...
Ternary: Al,Ga, As, In,Ga, N where 0<=x<=1
Quaternary: In,Ga, ,As P, , where 0<=x<=1 and 0<=y<=1

Half the total number of atoms must come from group III (Column III) and the
other half the atoms must come from group V (Column V) (or more precisely,
IV/IV , I1/V, or II/VI combinations) leading to the above “reduced

semiconductor notation.

Example: Assume a compound semiconductor has 25% “atomic”
concentrations of Ga, 25% “atomic” In and 50% “atomic” of N. The chemical
formula would be:

Gay 5Ing 55N 5
But the correct reduced semiconductor formula would be:

Ga sIn, sN
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long-range order In seEments atoms in an orderly array
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General classification of solids based on the degree of atomic order: (a) amorphous,
(b) polycrystalline, and ic) crystalline.

Material Classifications based on Crystal Structure

Amorphous Materials

No discernible long range atomic order (no detectable crystal structure). Examples are silicon
dioxide (S10,), amorphous-Si, silicon nitride (Si;N,), and others. Though usually thought of as less perfect than
crystalline materials, this class of materials is extremely useful.
Polycrystalline Materials

Material consisting of several “domains” of crystalline material. Each domain can be oriented
differently than other domains. However, within a single domain, the material is crystalline. The size of the
domains may range from cubic nanometers to several cubic centimeters. Many semiconductors are
polycrystalline as are most metals.

Crystalline Materials

Crystalline materials are characterized by an atomic symmetry that repeats spatially. The shape of
the unit cell depends on the bonding of the material. The most common unit cell structures are diamond,
zincblende (a derivative of the diamond structure), hexagonal, and rock salt (simple cubic).
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Comparison of the Hydrogen Atom and Silicon Atom

Ener _ mq* _ 13eer
N ngydrogen electron 2( 472_ 807’2 n)2 n2
Hydrogen where m, = electron mass, h = planks constant/2z =h/2x

q = electron charge, and n=1,2,3...

n=3
Eg=-151eV
n=2
-34eV
_ | 4 empty states
Figure 2.1 The hydrogen atom—idealized representation showing the first three allowed electron
orbits and the associated energy quantization. % /
n=2: Complete Shell oo N
2 “2s electrons” SlllCOn

6 “2p electrons”
8 Electrons

4 Valence Six allowed levels
at same energy
Shell ™ —>
Electrons Two allowed levels
at same energy
. _ $ P
n=1: Complete Shell n=3:
2 “s electrons” 2 “3s electrons”

) Only 2 of 6 “3p electrons”
Figure 2.2 Schematic representation of an isolated >1 atom.

Georgia Tech ECE 4833 - Dr. Alan Doolittle



Pauli Exclusion Principle

Only 2 electrons, of spin+/-1/2, can occupy the same energy
state at the same point in space.

EY
£y ' £,
£y
E, E, B
{/ \\ //{ \\ // /.)( g
. O ) { O | \ O (s O )
\\‘___,// \\_h__,// L ‘___,//
(a) (b)
FIGURE 1-9

Two hydrogen atoms: (a) noninteracting and (b) interacting. Splitting of energy levels is illustrated for (b).
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Banding of Discrete states and the Simplified Model
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Figure 2.5 Conceptual development of the energy band maodel starting with /¥ isolated Si atoms
on the top left and concluding with a *“dressed-up™ version of the energy band model on the top right,
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4 electrons available for sharing
(covalent bonding) in outer shell
of atoms
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Band Occupation at Low Temperature (0 Kelvin)

For (E, . . =kT)=0
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Band Occupation at Higher Temperature (T>0 Kelvin)

For (E

Georgia Tech
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Carrier Movement Under Bias
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Carrier Movement Under Bias
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Carrier Movement Under Bias
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Carrier Movement Under Bias
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Clarification of confusing issues:“Holes” and Electrons

E

C

_E.
@
o

The valance band may have ~4e22 cm valence electrons “participating in the bonding
processes holding the crystal together.

The valance band might only have ~1e6 to 1e19 cm “holes” in the valence band (missing
valence electrons). Thus, it is easier to account for the influence of the holes by counting the
holes directly as apposed to counting very small changes in the valence electron concentrations.

Example: If there are 1e 22 cm-3 atoms in a crystal with each atom having 4 valence electrons.
What is the difference in valence electron concentration for 1el12 holes verses 1e13 cm-3 holes?

Answer: 4 x 1e22 cm3-1e12 cm3 =3.9999999999¢22¢cm> verses
4x 1e22 cm3 -1e13 cm3 =3.999999999¢22¢m3

For “accounting reasons” keeping track of holes is easier!
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Clarification of confusing issues:“Holes” and Electrons

Terminology

Only |

Electrons: Sometimes referred to as conduction electrons: The electrons in
these | the conduction band that are free to move throughout the crystal.

“partick

Holes: Missing electrons normally found in the valence band (or empty states

29

CS in the valence band that would normally be filled).
carry
electric
ity If we talk about empty states in the conduction band, we DO NOT call them
holes! This would be confusing. The conduction band has mostly empty
Thus,
states and a few electrons.
we call
these If we talk about filled states in the valence band, we DO NOT call them
g . electrons! This would be confusing. We can call them Valence Electrons to
Sarﬂer indicate they are bond to atoms (in the valence shells of atoms). The valence
S band has mostly filled states and a few holes.

For the vast majority of this class we only talk about electrons (conduction
band electrons) and holes (empty states in the valence band)!
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Material Classification based on Size of Bandgap:

Ease of achieving thermal population of conduction band determines
whether a material is an insulator, semiconductor, or metal

Few
/ electrons z ~0 Electrons in ~106 - 10'* cm™3 Electrons in
ﬁ ¢ Conduction Band / Conduction Band without “help”
E; = 1.42 eV (GaAs)
% EC
Wide £~ 8eV(Si0) ( Eq = 1.12eV (Si)
E;~ 5 eV (Diamond) P E; = 0.66 eV (Ge)
\ Thermal ¥ (Room temperature)
! E excitation
\ v moderately
easy
(a) Insulator (b) Semiconductor
~10%2 ¢cm> Electrons in Conduction Band
0000
Very E
narrow v
T%/ E
Cc
o _

(c) Metal

Figure 2.8 Explanation of the distinction between (a) insulators, (b) semiconductors, and
(c) metals using the energy band model.
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Intrinsic Carrier Concentration

*For each electron promoted to the conduction band, one hole is
left in the valence band. Thus, the number of electrons in the
conduction band is equal to the number of holes in the valence
band unless there is “help” to change the relative populations in
each band.

Intrinsic carrier concentration is the number of electron (=holes)
per cubic centimeter populating the conduction band (or valence
band) is called the intrinsic carrier concentration, n,

n, = f(T) that increases with increasing T (more thermal energy)

At Room Temperature (T=300 K)

n~2e6 cm for GaAs with Eg=1.42 eV,
n~lel0 cm for Si with Eg=1.1 eV,
n~2el3 cm for Ge with Eg=0.66 eV,
n~le-14 cm for GaN with Eg=3.4 eV
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The need for more control over carrier concentration

Without “help” the total number of “carriers™ (electrons
and holes) is limited to 2n..

For most materials, this i1s not that much, and leads to
very high resistance and few useful applications.

We need to add carriers by modifying the crystal.

This process 1s known as “doping the crystal”.
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Regarding Doping, ...
Jusi Say No!

Just Say Yes
to Crystal Doping!




Extrinsic, (oxr doped material):

Concept of a Donor “adding extra” electrons
| | | | | | |

Example 11 WM L O O U U L

P, AS, Sb | | | | | | | | | | | | | |

in Si 900008
| | | | | | | | | | | | | |
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Concept of a Donor “adding extra” electrons

Use the Hydrogen Atomic Energy levels to approximate the energy
required to free an electron on a donor.

*Replace dielectric constant with that of the semiconductor
*Replace mass with that of the semiconductor
m,q* _ 136eV

(4ze, hn)’ W

where m, = electron mass, h = planks constant/2x =h/2rx

Enerngydrogen electron EH =

q = electron charge, and n=1,23...

*k

1
n
. x — =——F, =z-0.1eV forn=1
Bind r electr H )
inding for electron 2(472'5R80hn)2 5]23

* 4
m ¢ m

o
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Extrinsic, (oxr doped material):

Concept of a Donor “adding extra” electrons
| | | | | |
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Concept of a Donor “adding extra” electrons:
Band diagram equivalent view

’ ? P06 000 00 E
o 0000000 e e S E;
E,

T = 0K Increasing T Room temperature
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Extrinsic, (oxr doped material):

Concept of an acceptor “adding extra” holes
| | | | | | |

900000® .
|.|.|.I.I.I.I.| regions of

material
are
neutrally
charged.

.....

Example: One less bond l.l.l
B, Al, In means the
in Si acceptor is I.I.I

electrically

satisfied
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Concept of an Acceptor“adding extra hole”:
Band diagram equivalent view

EL‘
________ s et i o e sl 2900009 ® L,
% = E,

@) O Q0000000

T+ 0K Increasing T Room temperature
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ovagment

All
regions of
material
are
neutrally
charged.

Empty state 1s located next to the Acceptor
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ovagment

Another valence electron can fill the empty state located next to
the Acceptor leaving behind a positively charged “hole™.
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The positively charged “hole” can move throughout the crystal (really it is the
valance electrons jumping from atom to atom that creates the hole motion).
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The positively charged “hole” can move throughout the crystal (really it is the
valance electrons jumping from atom to atom that creates the hole motion).

Georgia Tech ECE 4833 - Dr. Alan Doolittle



The positively charged “hole” can move throughout the crystal (really it is the
valance electrons jumping from atom to atom that creates the hole motion).
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ole

ovagment

- .
o AT !I.I.I.I |
around th}? — — — Region
e oasees g
one extra ___ — g - “hole” has
electron and one less
thus is _ _ . _ electron and
negatively thus is
charged. l.l.l.l.l‘l.l \ positively
charged.

The positively charged “hole” can move throughout the crystal (really it is the
valance electrons jumping from atom to atom that creates the hole motion).
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Summary of Important terms and symbols

Bandgap Energy: Energy required to remove a valence electron and allow it to freely conduct.
Intrinsic Semiconductor: A “native semiconductor” with no dopants. Electrons in the conduction
band equal holes in the valence band. The concentration of electrons (=holes) is the intrinsic
concentration, n.

Extrinsic Semiconductor: A doped semiconductor. Many electrical properties controlled by the
dopants, not the intrinsic semiconductor.

Donor: An impurity added to a semiconductor that adds an additional electron not found in the
native semiconductor.

Acceptor: An impurity added to a semiconductor that adds an additional hole not found in the
native semiconductor.

Dopant: Either an acceptor or donor.

N-type material: When electron concentrations (n=number of electrons/cm?) exceed the hole
concentration (normally through doping with donors).

P-type material: When hole concentrations (p=number of holes/cm?) exceed the electron
concentration (normally through doping with acceptors).

Majority carrier: The carrier that exists in higher population (ie n if n>p, p if p>n)

Minority carrier: The carrier that exists in lower population (ie n if n<p, p if p<n)

Other important terms (among others): Insulator, semiconductor, metal, amorphous, polycrystalline,
crystalline (or single crystal), lattice, unit cell, primitive unit cell, zincblende, lattice constant,
elemental semiconductor, compound semiconductor, binary, ternary, quaternary, atomic density,
Miller indices, various notations, etc...
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Carrier Movement in Free Space

Newtons second law

F:—qEzmoﬂ
dt

F = force, v =velocity, t = time,

g = electronic charge, m, = electron mass
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Carrier Movement Within the Crystal

*Electron 1s a quasi-particle that behaves as a “wave” due to
quantum mechanical effects.

*The electron “wavelength™ 1s perturbed by the crystals
periodic potential.

.

QuickTme Movie

Potential
energy of
electron (@)
in crystal
e & o ®© B ©
{ | | Atomic cores I
T | |
| | Wave in |
free space|
l

| l
| |
I |
| |
| | l e
|
1 | |
| |
| |

Electron
wave

1
|
|
|

Wave in
crystal

W
| . S,
| | |

|
|
|
|
|
| | ili

i
4 |
| |
} 1
| |

FIGURE 1-11
Representation of motion of electron wave in crystal potential. (After Wolfendale [3].)
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Carrier Movement Within the Crystal

Fe—gE=m % F=gE=m %
todt dt
F = force, V= V@lOCily, t = time, F = force, V= V@ZOCiZ)/, [ =time,
q= electronic ch arge, q= electronic ch arge,
m_ = electron effective mass m; = hole effective mass

Table 2.1 Density of States Effective Masses at

300 K.
Material m¥ /m, my Imy,
Si 1.18 0.81
Ge 0.55 0.36

Ga% 0.066 0.52

Ge and GaAs have “lighter electrons” than Si
which results in faster devices
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Crystalline Order

Atoms forming a
Water Molecules, H,O, forming “Snowflakes” “Semiconductor”

Need tWO VOlu nteers e @ o (demo on how a crystal forms naturally due to

repulsive electronic bonds)
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Crystal Growth: How do we get “Single Crystalline Material”?

The vast majority of crystalline silicon produced is grown by the Czochralski growth
method. In this method, a single crystal seed wafer is brought into contact with a liquid
Silicon charge held in a crucible (typically S10, but may have a lining of silicon-nitride or
other material). The seed is pulled out of the melt, allowing Si to solidify. The solidified

material bonds to the seed crystal in the same atomic pattern as the seed crystal.

-~ :f N
Argam atmasgsheoe ‘\
* Ill'|
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@000

Schematic teprescnliton of the Urochralssi {a) wsad Mual (b} sisgle-crysial growih
L b
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Production of Solar Cell Grade Semiconductors

Float Zone Refinement for Ultra-High grade Silicon

Georgia Tech

Polycrystalline
ingot

Molten silicon

RF coil

Grown single
crystalline material

-4— Single crystalline seed
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Production of Solar Cell Grade Semiconductors

Au leaf
N— glass pressure plate

—-—
-

_——

. Se layer

“~1 Cu plate

First solid Thin-film selenium .
solar cell demonstrated by Fritts in Early Grondahl-Geiger copper-
1883. cuprous oxide photovoltaic cell

(circa 1927).

metal contacts

Structure of the first “modern” Si1 solar cell. 6% efficiency

(~15x improvement at the time).
Chapin, D.M., Fuller, C.S. and Pearson, G.L., "A New Silicon P-N Junction Photocell for
Converting Solar Radiation into Electrical Power", Journal of Applied Physics, Vol. 25,

pp. 676-677, 1954.
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Production of Solar Cell Grade Semiconductors

Si0, +C = Si+ CO,
Si +3HCl = SiHCL, + H,

SiHCI, + H, © Si + 3HCI

Descriptor Symbol
Single crystal sc-Si
Multicrystalline mc-Si
Polycrystalline pc-Si
Microcrystalline ue-Si

Georgia Tech

Semiconductor Element  Concentration
Steel (ppma)
) Al 1200-4000
B 37-45
P 127-30
Ca | 590
Cr 50-140
Cu 24.90
Fe 1600-3000
Mn 70-80
Mo | <10
Ni 40-80
Ti 150-200
v 100-200
Total production ~ 900 000 tonnes/p.a. 2 30

o Common Growth
QGrain Size

Techniques
Czochralski (CZ) float
>10cm zone (FZ)
Imm-10cm Cast, sheet, ribbon
Chemical-vapour
I um-Imm ...
deposition
<lpum Plasma deposition
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Production of Solar Cell Grade Semiconductors

Cutting wires
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Production of Solar Cell Grade Semlconductors
Edge Film Grown

ribbon of

crystallised silicon

direction of pull
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Production of Solar Cell Grade Semiconductors
l | | Dendritic Web Silicon

string

/ Ribbons
Molten silicon ’//

Pix

| Crucible

L
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Production of Solar Cell Grade Semiconductors
High performance Laser Grooved, plated and random
surface textured Si Solar Cells

textured front with SiO2 passivation

diffusion in grooves p-type substrate

aluminium alloyed BSF

rear copper contact
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Production of Solar Cell Grade Semiconductors
High performance Inverted Pyramid Si Solar Cells with
minimal metal-semiconductor contact area

finger “inverted" pyramids

rear contact oxide
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Production of Solar Cell Grade Semiconductors
High performance Back Contact Si Solar Cells with minimal
shadowing and minimal metal-semiconductor contact area

silicon dioxide passivation layer and
anti-reflection coatings

™~
N NN NN NN NN NN\

n-type diffusion

p-type substrate with high minority carrier lifetime

n-type diffusion p-type diffusion n-type diffusion
N s —

negative contact positive contact negative contact

all contacts are on the rear of the cell simplifiying interconnection
and preventing shading losses
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Chemical Vapor Deposition

Chemical gas sources are thermally, optically, or electrically (plasma) reacted
with a surface to “leave” behind deposits with reaction byproducts pumped out of

the reaction tube or vacuum chamber.

PRESSURE
SENSOR

SAMPLES
3-ZONE FURNACE /

BT

I I - 1 ! i
\QUAF\’TZ
TUBE

LOAD GAS
DOOR INLET
(a)
Gﬂ.s
LJI ILJ SAMPLES
@ [— HEATER ] @
F 1| . T
EXHALUST CO'D;EE—-FOR

(b)
FIGURE 1

Schematic diagrams of CVD reactors: (a) Hot-wall, reduced-pressure reactor. (b) Continuous,

atmospheric-pressure reactor.
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Four Basic CVD Reactors

1.) Atmospheric Pressure CVD (APCVD)

Advantages: High deposition rates, simple, high throughput
Disadvantages: Poor uniformity, purity is less than LPCVD
Used mainly for thick oxides.

2.) Low Pressure CVD (LPCVD at ~0.2 to 20 torr)

Advantages: Excellent uniformity, purity

Disadvantages: Lower (but reasonable) deposition rates than APCVD

Used for polysilicon deposition, dielectric layer deposition, and doped dielectric deposition.

3.) Metal Organic CVD (MOCVD)

Advantages.: Highly flexible—> can deposit semiconductors, metals, dielectrics
Disadvantages: HIGHLY TOXIC!, Very expensive source material. Environmental disposal
costs are high.

Uses: Dominates optical (but not electronic) III-V technology, some metallization processes

(W plugs and Cu)

4.) Plasma Enhanced CVD

Plasmas are used to force reactions that would not be possible at low temperature.
Advantages.: Uses low temperatures necessary for rear end processing.
Disadvantages: Plasma damage typically results.

Used for dielectrics coatings.
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Epitaxy
Single Crystal Semiconductors (Epitaxy)
We can grow* crystalline semiconductors by raising the temperature to allow more surface migration

and by using a crystalline substrate (S1, GaAs, InP wafer, etc...)
===> Single crystal material mimicking the crystal structure of the layers below it.

/ /
y
/ Pu/
llll'lli \.._.‘..\-
)
Lower level
~/

Figure 14-32 A microscopic view of a semiconductor
surface during MBE growth or evaporation.

*Instead of the word deposit, we use “grow” to describe the tendency of the deposited material to mimic the crystal structure of
crystalline substrate material.
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Epitaxy

Importance of lattice mismatch

The lattice constant of the epitaxially grown layer needs to be close to the lattice constant of the
substrate wafer. Otherwise the bonds can not stretch far enough and dislocations will result.

Strained (compressed)
but unbroken bond
Strained (elongated)

Dislocation lslflrl?::lignbll)l(t)nd butunbroken bond
-0 000000 e-ol-0-0 0 0 p-o
W Proteese tireetere [N L]
ssessss@anE s aENetEsilil
SO SN AN T e
O-0-@ n—?—?—o~9 ?-?—o—o—c SJ?LO ?“?—?—Ezf—D ?
b 90790700 9-0-9-0-9-3-0-0 Q=90 499-0-¢
0-0-0—-0-0-0-0-0 ©0-0-0-0-0-0-0-0 0-0-0—-0-0-0-0-0
0-0-0-0-0-0-0-0 0-0-0-0-0-0-0-0 O-O-0-0-0-0-06-06
Commensurate Strain relaxed Pseudomorphic
(A) incommensurate (8) (c)

Figure 14-18 Epitaxial growth processes can be divided into (a) commensurate, (b) strain relaxed
incommensurate, and (c) incommensurate but pseudomorphic.
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Epitaxy

Importance of lattice mismatch

The lattice constant of the epitaxially grown layer needs to be close to the lattice constant of the
substrate wafer. Otherwise the bonds can not stretch far enough and dislocations will result.

|
I-I
|

Misfit dislocation

Fgerg 2F  Msc diglioealinn schemadic

l

Figure 28 A TEM comparable to the schematic of Fig-
ure 2.7 that shows the (111) planes of aluminum ep-
taxially overgrown on silicon and the (111 planes of
the silieon aubsrrate

Georgia Tech ECE 4833 - Dr. Alan Doolittle



MOCVD

Primarily used for I1I-VI, and I1I-V semiconductors, special metallic
oxides and metals.

Metal Organic Chemical Vapor Deposition (MOCVD)
*Many materials that we wish to deposit have very low vapor
pressures and thus are difficult to transport via gases.
*One solution is to chemically attach the metal (Ga, Al, Cu,
etc...) to an organic compound that has a very high vapor
pressure. Organic compounds often have very high vapor
pressure (for example, alcohol has a strong odor).
*The organic-metal bond is very weak and can be broken via
thermal means on wafer, depositing the metal with the high
vapor pressure organic being pumped away.
*Care must be taken to insure little of the organic byproducts ) myaregen
are incorporated. Carbon contamination and unintentional
Hydrogen incorporation are sometimes a problem.

Human Hazard: As the human body absorbs organic compounds very easily,

the metal organics are very easily absorbed by humans. Once in the body, the o & ]
weak metal-organic bond is easily broken, thus, poisoning the body with

heavy metals that often can not be easily removed by normal bodily functions. Agure 14-19  Examples of common vrgunometallics used
In extreme cases, blood transfusion is the only solution (if caught in time). in MOCVD include {from top to bottom

tnmethylgallium, letrabutylarsine, and trethy lgalhum,
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Molecular Beam Epitaxy (MBE)

MBE

Dominates I11I-V electronic market and strong competitor in upper end LASER market
Offers the highest purity material (due to UHV conditions) and the best layer control (almost any fraction of an atomic
layer can be deposited and layers can be sequenced one layer at a time (for example Ga then As then Ga etc...).

*In an UHV chamber, ultra high purity
materials are evaporated.

*Because of the very low pressure, the mean
free path is very long (can be hundreds of
meters). Thus, the evaporated material
travels in a straight line (a molecular beam)
toward a hot substrate.

*Once on the substrate, the atom or molecule
moves around until it finds an atomic site to
chemically bond to.

*Shutters can be used to turn the beam flux
on and off

*The flux of atoms/molecules is controlled
by the temperature of the “effusion cell”
(evaporation source).

Georgia Tech
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Crystalline Order

Atoms forming a
Water Molecules, H,O, forming “Snowflakes” “Semiconductor”

Need tWO VOlu nteers e @ o (demo on how a crystal forms naturally due to

repulsive electronic bonds)
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Heterojunction Materials
Compound Semiconductors allow us to perform “Bandgap Engineering” by
changing the energy bandgap as a function of position. This allows the
electrons to see “engineered potentials” that “guide” electrons/holes in specific
directions or even “trap” them in specific regions of devices designed by the
electrical engineer.

Example: Consider the simplified band diagram of a GaN/ Ga, ;5In, ,sN/ GaN
LED structure. Electrons and holes can be “localized” (trapped) in a very small
region — enhancing the chance they will interact (recombine). This is great for
light emitters!

E

conduction

E

valence
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How do we produce these Energy Engineered Structures and
Devices?
Epitaxial Semiconductor and Dielectric deposition Techniques:

«“Epitaxial” is derived from the Greek word for skin, more specifically “thin
skin”. Thin layers of materials are deposited on a substrate

*Temperature and substrate determines the physical structure of the deposited
films:

*Low Temperatures or non-crystalline substrate:
*Materials end up with amorphous or polycrystalline materials
*High Temperature AND Crystalline substrate

*Need to have an existing crystalline wafer so as to “seed” the
crystallization process.

Films that retain the substrates basic crystal structure are “Epitaxial”
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Epitaxy

Single Crystal Semiconductors (Epitaxy)

We can grow* crystalline semiconductors by raising the temperature to allow more atom surface
migration (movement of atoms due to thermal energy) and by using a crystalline substrate (Si, GaAs,
InP wafer, etc...) to act as a “template” or crystalline pattern. This results in a single crystal material
mimicking the crystal structure of the layers below it. y

/ Lower level J/

Figure 14-32 A microscopic view of a semiconductor
surface during MBE growth or evaporation.

*Instead of the word deposit, we use “grow” to describe the tendency of the deposited material to mimic the crystal structure of
crystalline substrate material.
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Molecular Beam Epitaxy (MBE)

Molecular Beam Epitaxy (MBE)
Dominates III-V electronic market and strong competitor in upper end LASER market

Offers the highest purity material (due to UHV conditions) and the best layer control (almost any
fraction of an atomic layer can be deposited and layers can be sequenced one layer at a time (for
example Ga then As then Ga etc...).

*In an UHV chamber, ultra high purity materials
are evaporated.

*Because of the very low pressure, the mean free
path is very long (can be hundreds of meters).
Thus, the evaporated material travels in a straight
line (a molecular beam) toward a hot substrate
resulting in highly efficient raw materials usage.
*Once on the substrate, the atom or molecule
moves around until it finds an atomic site to
chemically bond to.

*Shutters can be used to turn the beam flux on and
off

*The flux of atoms/molecules is controlled by the
temperature of the “effusion cell” (evaporation
source).
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How do we create Bandgap Engineered Structures? Epitaxy

*Repeating a crystalline structure by the atom by atom
addition.

*Chemistry controls the epitaxy to insure that, for
example, Ga bonds only to N and not Ga-Ga or N-N
bonds*.

#~"%*A small number of “antisite” defects (Ga-Ga or N-N bonds) actually do form but are typically in the parts per trillion concentration.
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How do we create Bandgap Engineered Structures? Epitaxy
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Engineered Energy Behavior in Compound Semiconductors

The potential distributions we will use in this class are all possible/common in device
structures. Some may represent “grown in potentials” (quantum wells, etc...) or naturally
occurring potentials (parabolic potentials often occur in nature — lattice vibrations for
example) including periodic potentials such as lattice atoms.

® N

A

Kinetic
Energy

Potential
Energy

E=-qV

Arbitrary Reference Energy
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