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Multijunction
 

solar cell basics

•

 

Fundamental solar cell efficiency limits 
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•
 

Single-junction cell 
efficiency is limited to ≈

 

30%
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Multijunction
 

solar cell basics

•

 

Multijunction

 

cells: combine 
different cells (different Eg

 

) to 
minimize absorption and 
thermalization

 

losses 
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Multijunction
 

solar cell basics

•

 

Practical implementation?

•

 

Spectral splitting
•

 

Mechanical stack
•

 

Monolithic stack
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Multijunction
 

solar cell basics

•

 

Practical implementation?

•

 

Spectral splitting
•

 

Mechanical stack
•

 

Monolithic stack

Cell 3Cell 2Cell 1

Main challenges: 

- bulky
- mechanical architecture
- electrical architecture
- limited by optical system
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Multijunction
 

solar cell basics

•

 

Practical implementation?

•

 

Spectral splitting
•

 

Mechanical stack
•

 

Monolithic stack

Cell 3

Cell 2

Cell 1

Main challenges: 

- electrical architecture
- optical coupling
- interconnect/stacking complexity
- heat dissipation
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Multijunction
 

solar cell basics

•

 

Practical implementation?

•

 

Spectral splitting
•

 

Mechanical stack
•

 

Monolithic stack
Cell 3
Cell 2
Cell 1

Main challenges: 

- series connection 
- current matching requirement
- limited choice of materials (lattice matching)
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State-of-the-art

•

 

In0.5

 

Ga0.5

 

P/GaAs/Ge monolithic triple-junction

•

 

Optimal single-junction: GaAs

 

(25.1 %)
•

 

Addition of lattice-matched In0.5

 

Ga0.5

 

P top cell (30.3 %)
•

 

Addition of Ge

 

bottom cell in high-quality Ge

 

substrate (32.0 %)
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State-of-the-art

Record conversion 
efficiencies obtained (32% 
under 1 sun, 40.1% under 
concentration)

Key technologies:

•

 

current matching of top and 
middle cell
• wide-gap tunnel junction
•

 

exact lattice matching (1% 
Indium added in GaAs

 

cell)
• InGaP

 

disordering
• Ge

 

junction formation
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Further optimization of triple-junction design 

Important limitation: Ge

 photocurrent is used 
inefficiently because of current 
matching requirement 

Rload

I1
I2
I3

Itotal

InGaP2 ≤ 17.7 mA/cm2

GaAs ≤ 15.2 mA/cm2

Ge ≤ 29.1 mA/cm2
Rload
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Itotal
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•

 

In0.5

 

Ga0.5

 

P/GaAs/Ge monolithic triple-junction

→

 

Room for improvement ! 
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Metamorphic InGaP/InGaAs/Ge

Optimal combination: lattice 
matched In0.65

 

Ga0.35

 

P top and 
In0.17

 

Ga0.83

 

As middle cell, 1.1% 
lattice-mismatched

 

to Ge

 bottom cell (metamorphic cell)

→

 

Decrease top and middle cell bandgap
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Metamorphic InGaP/InGaAs/Ge

Lattice-mismatch causes dislocations and subsequent recombination

In0.15

 

Ga0.85

 

As layer

graded buffer 
efficiently stops
threading dislocations
Ge

 

substrate

Buffer structures are used to accommodate dislocations
and allow growth of relaxed active layers
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Metamorphic InGaP/InGaAs/Ge

Best results obtained using In0.56

 

Ga0.44

 

P/In0.08

 

Ga0.92

 

As/Ge cell
(0.5% MM): 40.7% at C=240

Copyright Spectrolab
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Inverted metamorphic InGaP/(In)GaAs/InGaAs

Further optimization of bandgap

 

combinations
→ InGaP/GaAs/InGaAs(1 eV), or 

InGaP/InGaAs(1.34eV)/InGaAs(0.9 eV) triple-junction cell

•

 

Dislocations degrade high bandgap

 

cells

In0.5

 

Ga0.5

 

P
GaAs

Inactive Ge

1.4 eV
1.85 eV

0.67 eV

1.9% mismatch

In0.3

 

Ga0.7

 

As1.0 eV
buffer

•

 

Inverting the structure limits dislocations to InGaAs

 

cell

In0.5

 

Ga0.5

 

P
GaAs

Inactive Ge

1.4 eV
1.85 eV
0.67 eV

In0.3

 

Ga0.7

 

As1.0 eV
buffer
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In0.5

 

Ga0.5

 

P
GaAs

Inactive Ge

1.4 eV
1.85 eV

0.67 eV

In0.3

 

Ga0.7

 

As1.0 eV
buffer

Inverted metamorphic InGaP/(In)GaAs/InGaAs

•

 

Inverted metamorphic (IMM) has achieved record 
efficiencies of 33.8% (1 sun) and 40.8% (C=326)!

•

 

Additional advantages: flexible and light-weight

In0.5

 

Ga0.5

 

P
GaAs

Inactive Ge

1.4 eV
1.85 eV
0.67 eV

In0.3

 

Ga0.7

 

As1.0 eV
buffer

handle
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IMEC approach

•

 

Mechanical stack using one-side contacted, thinned-down 
III-V cells

•

 

Full benefit of Ge

 

photocurrent →

 

increased η
•

 

Limited complexity electrical architecture
•

 

No tunnel junctions
•

 

Modular approach
•

 

(re-)use of 3D-stacking technology
•

 

Robust against spectral variations
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Record efficiencies

Courtesy NREL
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Record efficiencies
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Space applications

InGaP/GaAs/Ge

 

triple-junction cells have become the
unchallenged workhorse for space applications:

•

 

High efficiency allows for reduced solar array area.
•

 

Further weight reduction is achieved by use of thin 
(140-180 μm) Ge

 

substrates.
•

 

Robustness to cosmic radiation results in high EOL 
efficiency.

Typical area ≈

 

30 cm2
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Terrestrial applications

•

 

Can this technology be brought down to earth?

•

 

Current state-of-the-art in terrestrial photovoltaics

 

is flat-plate 
Si modules, with η

 

≈

 

13% (15-16% at cell level) at a module 
cost of 2-2.5 €/W (cell cost 1-1.5 €/W).

•

 

State-of-the-art InGaP/GaAs/Ge

 

cell cost ≈

 

200-250 $/W

•

 

Solution: apply InGaP/GaAs/Ge

 

cells in concentrator (CPV) 
systems.
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CPV system

Fresnel lens

Solar cell
mm2

 

- size

Heat

Heat sink
Electric output

Solar irradiation

•

 

Replace expensive solar cells 
with cheaper optical 
elements

•

 

Make full use of high η

 
offered by multijunction

 

cells 
(Voc

 

~ ln

 

(Jsc

 

))
•

 

High concentration (500-

 
1000) effectively offsets cell 
cost

CPV system components:

•

 

Solar cell
•

 

Optics
•

 

Tracker
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CPV system: optics

Basically two options: refractive vs. reflective

Photo Credit Solar systemsPhoto Credit Concentrix

 

Solar

Currently, as many solutions for optic system as CPV companies around
Typical optical efficiency ≈

 

85%
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CPV system: tracker

Because of high concentration factor, CPV system needs to be pointed 
accurately at the sun (typical CPV acceptance angle = 0.10-10)

No proven best general solution →

 

room for improvement

Significant component of system cost (~20%) →

 

avoid overdesign!
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Is CPV cost competitive?

Copyright Spectrolab
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Is CPV cost competitive?

Yes!
but…
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Diffuse/Global irradiation lightYearly global irradiation
(kWh/m²)

Is CPV cost competitive?
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Commercialization

•

 

First commercial systems are appearing.

© by Concentrix
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Commercialization

•

 

First commercial systems are appearing.

©

 

by Solar Systems
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Challenges

In order to move from demonstrator/prototype phase to 
commercial application, CPV industry requires:

• Assembly automation (Microelectronics/LED like)

• System integration

• Relevant DNI data

•

 

Standards: testing, power/energy rating, certification 
(IEC 62108)
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