1.) A 1000 liter/sec turbo pump is used to pump a process chamber. It is connected to a large vacuum chamber (infinite conductance) through a tube that is 2 feet long and has an inner diameter of 4 inches. What is it's effective pumping speed in liters/sec.

A turbopump is a high or ultrahigh vacuum pump. Thus the worst case vacuum is 10^{-4} torr. Thus, the mean free path between collisions is,

$$
\lambda=\frac{k T}{\sqrt{2} \pi d^{2} P}=\frac{\left(1.381 e-23 J K^{-1}\right) 300 K}{\sqrt{2} \pi(3 e-10)^{2}(1 e-4 \text { Torr } \times 133 \text { Pa } / \text { Torr })}=0.78 \text { meters }=78 \mathrm{~cm}
$$

Thus, the Knudsen number is $78 /(2.54 \mathrm{~cm}$ per inch x 4 inchs$)=1.28$ which is greater than 1 indicating molecular flow. Thus,

$$
\frac{1}{S_{\text {effective }}}=\frac{1}{1000 \text { liters } / \text { Sec }}+\frac{1}{11.6 \frac{(4 " x 2.54)^{3}}{\left(24^{\prime \prime} \times 2.54\right)}}=\frac{1}{1000 \text { liters } / \text { Sec }}+\frac{1}{200 \text { liters } / \text { Sec }}=166 \text { liters } / \mathrm{sec}
$$

2.) A process gas is to introduced into the chamber from problem 1 and the chamber must be maintained at $1 \mathrm{e}-4$ torr. A.) What is the maximum flow rate (in sccm) of gas the pumping system can handle? B.) Repeat the problem for the pump connected directly to the chamber.

Use $\mathrm{Q}=\mathrm{SP}: ~ \mathrm{Q}=(166$ liters $/ \mathrm{S})(1 \mathrm{e}-4$ Torr $)=0.0166$ Torr Liters $/ \mathrm{Sec}$ or 1.31 sccm (see your conversion chart)

If the pump were connected directly to the chamber, $\mathrm{Q}=(1000$ liters $/$ second $)(1 \mathrm{e}-4$ torr $)=>7.9$ scem.

Homework \#6:
3.) A wet chemical etch is desired that will etch a via hole through a silicon wafer for integration into a low inductance, high frequency circuit. If a $482 \mathrm{um} / \mathrm{min}$ etch rate is desired, what is the volume ratios of hydrofluoric, nitric and acetic acids required?

Many possible solutions exist. From the etching triangle, one solution is; $\sim 65 \%$ HF, $\sim 25 \%$ Nitric, and $\sim 10 \%$ Acetic. Two lines are freely drawn parallel to the counterclockwise adjacent triangle side. The third line is constrained to the vertex of the previous 2 lines.

Figure 11-5 The etch rate of silicon in HF and HNO_{3} (after Schwarz and Robbins, reprinted by permission of the publisher, The Electrochemical Society Inc.).

