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Postulates of Quantum Mechanics

Classical Mechanics describes the dynamical* state variables of a particle as 
x, y, z, p,  etc... 

Quantum Mechanics takes a different approach.  QM describes the state of 
any particle by an abstract “Wave Function”, Ψ( x, y ,z ,t ), we will describe in 

more detail later.

We will introduce Five Postulates of Quantum Mechanics and one 
“Governing Equation”, known as the Schrödinger Equation.  Postulates are 
hypotheses that can not be proven.  If no discrepancies are found in nature, 

then a postulate becomes an axiom or a “true statement that can not be 
proven”.  Newton’s 1st and 2nd “Laws” and Maxwell’s equations are axioms 

you are probably already familiar with.

*There are also classical static variable such as mass, electronic charge, etc... that do not change during physical processes.
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Postulates of Quantum Mechanics

Postulate 1

•The “Wave Function”, Ψ( x, y ,z ,t ), fully characterizes a quantum 
mechanical particle including it’s position, movement and temporal 
properties.

• Ψ( x, y ,z ,t ) replaces the dynamical variables used in classical mechanics 
and fully describes a quantum mechanical particle.

The two formalisms for the wave function:

•When the time dependence is included in the wavefunction, this is called the 
Schrödinger formulation.  We will introduce a term later called an operator 
which is static in the Schrödinger formulation.

•In the Heisenberg formulation, the wavefunction is static (invariant in time) 
and the operator has a time dependence.  

•Unless otherwise stated, we will use the Schrödinger formulation
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Postulates of Quantum Mechanics
Postulate 2

•The Probability Density Function of a quantum mechanical particle is:

Ψ∗( x, y ,z ,t )Ψ( x, y ,z ,t )

•The probability of finding a particle in the volume between v and v+dv is:

Ψ∗( x, y ,z ,t )Ψ( x, y ,z ,t )dv

•In 1D, the probability of finding a particle in the interval between x & x+dx is:

Ψ∗( x , t )Ψ( x, t )dx

•Since “Ψ∗( x , t )Ψ( x, t )dx” is a probability, then the sum of all probabilities must 
equal one.  Thus,

4.1)

•This is the Normalization Condition and is very useful in solving problems.  If Ψ
fulfills 4.1, then Ψ is said to be a normalized wavefunction.
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Ψ(x,y,z,t), the particle “wave function”, is related to the probability of finding a particle at 
time t in a volume dxdydz.  Specifically, this probability is:

( ) [ ]dxdydzdxdydztzyx ΨΨΨ *2 or   ,,,
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But since Ψ is a probability,

Solymar and Walsh figure 3.1

Postulates of Quantum Mechanics
Postulate 2 (cont’d)
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Postulates of Quantum Mechanics

Every classically obtained dynamical 
variable can be replaced by an 
“operator” that “acts on the wave 
function”.  An operator is merely the 
mathematical rule used to describe a 
certain mathematical operation.  For 
example, the “x derivative operator”
is defined as “d/dx”.  The wave 
function is said to be the operators’
operand, i.e. what is being acted on.

The following table lists the 
correspondence of the classical 
dynamical variables and their 
corresponding quantum mechanical 
operator: ti
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Postulates of Quantum Mechanics
Postulate 4

For each dynamical variable, ξ, there exists an expectation value, <ξ> that can be 
calculated from the wave function and the corresponding operator ξop (see table 
under postulate 3) for that dynamical variable, ξ.  Assuming a normalized Ψ,

4.2)

The expectation value, denoted by the braces <>, is also known as the average 
value or ensemble average.

Brennan goes through a formal derivation on pages 28-29 of the text and points 
out that the state of a QM particle is unknown before the measurement.  The 
measurement forces the QM particle to be compartmentalized into a known state.  
However, multiple measurements can result in multiple state observances, each 
with a different observable.  Given the probability of each state, the expectation 
value is a “weighted average” of all possible results weighted by each results 
probability.
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Postulates of Quantum Mechanics
Postulate 4

Example: Lets assume the wave function of a QM particle is of an observable “x”
is given by:

We can normalize Ψ (see postulate 2) to get the constant A:

Then we can calculate the expectation value of x, <x> as:

Note: That the probability Ψ∗Ψ of observing the QM particle is 0 at x=0 but 
multiple measurements will average to a net weighted average measurement of 0.
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Postulates of Quantum Mechanics
Postulate 4

As the previous case illustrates, sometimes the “average value” of an observable is 
not all we need to know.  Particularly, since the integrand of our <x> equation was 
odd, the integrand was 0.  (Looking at whether a function is even or odd can often 
save calculation effort).  We may like to also know the “standard deviation” or the 
variance (standard deviation squared) of the observable around the average value.  
In statistics, the standard deviation is:

And since <x>=0, all we need is:

Similarly, we could also calculate other higher order moments of distributions 
such as skewness, curtosis, etc...
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Postulates of Quantum Mechanics
Postulate 4

Real world, measurable observables need to be “real” values (i.e. not imaginary / 
complex).  What makes for a real expectation value?  To answer this, we need to 
consider some properties of operators and develop (work toward) the concept of a 
“Hermitian Operator”.

Eigenfunctions and Eigenvalues:

If the effect of an operator acting on an operand (wave function in our case) is 
such that the operand is only modified by a scalar constant, the operand is said to 
be an Eigenfunction of that operator and the scalar is said to be an Eigenvalue.

Example:
t)Ψ(x,t)(x,ξop sλ=Ψ

Eigenfunction 
of Operator ξ

Eigenvalue
Operand

Operator
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Postulates of Quantum Mechanics
Postulate 4

Example:  consider the case of an exponential function and the differential 
operator

xλ
s

xλ

xλ

op

ss

s

eλe
dx
d

et)Ψ(x,
dx
dξ

=

=

=

Eigenfunction 
of derivative 

operator

Eigenvalue
Operand

Eigenfunctions and Eigenvalues are very important in quantum mechanics and 
will be used extensively.  KNOW THEM!  RECOGNIZE THEM!  LOVE THEM!
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Postulates of Quantum Mechanics
Postulate 4

Linear Operators:

Unlike the case for classical dynamical values, linear QM operators generally do 
not commute.  Consider:
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Postulates of Quantum Mechanics
Postulate 4

If two operators commute, then their physical observables can be known 
simultaneously.

However, if two operators do not commute, there exists an uncertainty 
relationship between them that defines the relative simultaneous knowledge of 
their observables.  More on this later...
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Postulates of Quantum Mechanics
Postulate 4:  A “Hermitian Operator” (operator has the property of Hermiticity) 
results in an expectation value that is real, and thus, meaningful for real world 
measurements.  Another word for a “Hermitian Operator” is a “Self-Adjoint 

Operator”.  Let us work our way backwards for the 1D case:
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Postulates of Quantum Mechanics
Postulate 4

Consider two important properties of a “Hermitian Operator”

1)  Eigenvalues of Hermitian Operators are real, and thus, measurable quantities.  
Proof:

real. is λ if only true is  whichλλ Thus,
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Postulates of Quantum Mechanics
Postulate 4

Consider two important properties of a “Hermitian Operator”

2)  Eigenfunctions corresponding to different and unequal Eigenvalues of a 
Hermitian Operator are orthogonal.  Orthogonal functions of this type are 
important in QM because we can find a set of functions that spans the entire QM 
space (known as a basis set) without duplicating any information (i.e. having the 
one function project onto another).
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See Brennan section 1.6 for details
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Postulates of Quantum Mechanics
Postulate 5

Probability current density is conserved.

If a particle is not being created or destroyed it’s integrated probability always 
remains constant (=1 for a normalized wave function).  However, if the particle is 
moving, we can define  a “Probability Current Density” and a Probability 
Continuity equation that describes the particles’ movement through a Gaussian 
surface (analogous to electromagnetics).  Brennan, section 1.5 derives this concept 
in more detail than I wish to discuss and arrives at the following:
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Postulates of Quantum Mechanics
Postulate 5

Basically this expression states that the wave function of a quantum mechanical 
particle is a smoothly varying function.  In an isotropic medium, mathematically, 
this is stated in a simplified form as:

Simply stated, the wave function and it’s derivative are smoothly varying (no 
discontinuities) .  However, in a non-isotropic medium (examples at a 
heterojunction where the mass of an electron changes on either side of the junction 
or at an abrupt potential boundary) the full continuity equation MUST be used.  
Be careful as the above isotropic simplification is quoted as a Postulate in MANY 
QM texts but can get you into trouble (see homework problem) in non-isotropic 
mediums.  When in doubt, use
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Postulates of Quantum Mechanics
Example using these Postulates

Consider the existence of a wave function (Postulate 1) of the form:

( ) ( )( )
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Figure after Fred Schubert with gratitude.
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Postulates of Quantum Mechanics
Example using these Postulates

Consider the existence of a wave function (Postulate 1) of the form:
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Postulates of Quantum Mechanics
Example using these Postulates

Show that this wave function obeys the Probability Continuity 
Equation (Postulate 5) at the boundaries x=+/-π:
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Postulates of Quantum Mechanics
Example using these Postulates

Show that this wave function obeys the smoothness constraint 
(Postulate 5 for isotropic medium) at the boundaries x=+/-π:
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Thus, the wave function and its derivative are both zero and continuous at 
the boundary (same for x=-π).
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Postulates of Quantum Mechanics
Example using these Postulates

What is the expected position of the particle? (Postulate 3)
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Since the function in parenthesis is even and “x” is odd, the product 
(integrand) is odd between symmetric limits of x=+/-π).  Thus, 

Note: Postulate 4 is not demonstrated because Ψ is not an Eigenfunction of any operator. 



ECE 6451 - Dr. Alan DoolittleGeorgia Tech

Momentum-Position Space and Transformations

Position 
Space 

Momentum 
Space 

Fourier Transform
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For more detail, see Brennan p. 24-27

If a state is localized in position, x, it is delocalized in momentum, p.  This leads us to a fundamental 
quantum mechanical principle:  You can not have infinite precision measurement of position and 
momentum simultaneously.  If the momentum (and thus wavelength from p=h/λ) is known, the 
position of the particle is unknown and vice versa.
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Momentum-Position Space and Transformations

The above wave function is a superposition of 27 simple plane waves and creates a net wave function 
that is localized in space.  The red line is the amplitude envelope (related to Ψ∗Ψ).  These types of 
wave functions are useful in describing particles such as electrons.  The wave function envelope can 
be approximated with a Gaussian function in space.  Using the Fourier relationship between space and 
momentum, this can be transformed into a Gaussian in momentum (see Brennan section 1.3).  The 
widths of the two Gaussians are inversely related.

( ) 2

2

2b
x

ex
−

=Ψ ( ) 2

22

2h
pb

bep
−

=φFourier Transform



ECE 6451 - Dr. Alan DoolittleGeorgia Tech

Momentum-Position Space and Transformations

The widths of the two Gaussians are inversely related.  Thus, accurate knowledge of position leads to 
inaccurate knowledge of momentum.
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Uncertainty And the Heisenberg Uncertainty Principle

Due to the probabilistic nature of Quantum Mechanics, uncertainty in 
measurements is an inherent property of quantum mechanical systems.  
Heisenberg described this in 1927.  

For any two Hermitian operators that do not commute (i.e. BOPAOP≠AOPBOP ) 
there observables A and B can not be simultaneously known (see Brennan 
section 1.6 for proof).  Thus, there exists an uncertainty relationship between 
observables whose Hermitian operators do not commute.

Note: if operators A and B do commute (i.e. AB=BA) then the observables 
associated with operators A and B can be known simultaneously.
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Uncertainty And the Heisenberg Uncertainty Principle

Consider the QM variable, ξ, with uncertainty (standard 
deviation) ∆ξ defined by the variance (square of the 
standard deviation or the mean deviation),

(∆ξ)2=<ξ2>−<ξ>2

∆ξ is the standard/mean deviation for the variable ξ from 
its expectation value <ξ>

There are two derivations of the Heisenberg Uncertainty 
Principle in QM texts.  The one in Brennan is more 
precise, but consider the following derivation for it’s 
insight into the nature of the uncertainty.  Brennan’s 
derivation will follow.
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Uncertainty And the Heisenberg Uncertainty Principle
Insightful Derivation:

Consider a wave function with a Gaussian distribution defined by:

The normalization constant can be determined as,

Taking the Fourier transformation of this function into the momentum space 
we get, 
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−∆

−

∞

∞−

−









∆

∆
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∆
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∫
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x
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The standard 
deviation in 
momentum space is 
inversely related to 
the standard deviation 
in position space.
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Uncertainty And the Heisenberg Uncertainty Principle
Insightful Derivation:

The standard deviation in momentum space is inversely related to the 
standard deviation in position space.

Defining:

Position Space Momentum Space

( ) ( )ξσξσ ∆=∆= / and p hx

( ) ( ) ( )

( ) ( ) ( )2

2

2

2

2
4

1

2
4

1

2
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2
4

X

X
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X

x

X

X

ex

ex

σ

σ

πσ
π

πσ
σπ

−

−

=Ψ

=Ψ ( )
( ) ( )

( ) ( ) ( )2
2

2

2

24
1

2
4

1

2
4

2

4

p

p

p

p

p

p

p

ep

ep

σ

σ

πσ
π

πσ

σπ

−

−

=Φ

=Φ

( ) ( )

h=

==

∆x∆p

∆pσ and ∆xσ px

( )∆xσx =
( )∆pσp =
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Uncertainty And the Heisenberg Uncertainty Principle
Precise Derivation:

The solution for the Gaussian distribution is exact only for that distribution.  
However, the assumption of a Gaussian distribution overestimates the 
uncertainty in general.  Brennan (p. 46-48) derives the precise “General”
Heisenberg Uncertainty Relationship using:

A) If two operators do not commute (i.e. AB≠BA) in general a relationship 
can be written such that AB-BA=iC

B) Given (A) the following property proven true by Merzbacher 1970:

(∆A)2 (∆B)2 ≥ 0.25C2

Thus, given the position operator, x, and momentum operator, px=(ħ/i)(d/dx), 

( )

iCΨΨx
dx
d

idx
d

i
x

iCΨΨxpxp
Ψ function  waveon operate  thisLetting

iCxpxp

xx

xx

=





 −

=−

=−

hh
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Uncertainty And the Heisenberg Uncertainty Principle
Precise Derivation (cont’d):

A) If two operators do not commute (i.e. AB≠BA) in general a relationship 
can be written such that AB-BA=iC

B) Given (A) the following property proven true by Merzbacher 1970:

(∆A)2 (∆B)2 ≥ 0.25C2

( )

( )

C

iCΨΨ
i

iCΨΨ
dx
d

i
xΨ

i
Ψ

dx
d

i
x

iCΨxΨ
dx
d

i
Ψ

dx
d

i
x

iCΨΨx
dx
d

idx
d

i
x

iCΨΨxpxp
Ψ function  waveon operate  thisLetting

iCxpxp

xx

xx

=

=−

=





−−








=−

=





 −

=−

=−

h

h

hhh

hh

hh
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Uncertainty And the Heisenberg Uncertainty Principle
Precise Derivation (cont’d)

Thus, since (∆A)2 (∆B)2 ≥ 0.25C2, with in this case, ∆A=∆x and ∆B=∆p,

( ) ( )

( )( )
2

px

2
px

  torelated bemust  p is p and x, isx   withassociated esuncertaini  thecase, For this
ixpxp

2
22

x

xx

h

h

h

h

≥∆∆







≥∆∆

∆∆
=−

Note the extra factor of ½.
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Uncertainty And the Heisenberg Uncertainty Principle

Energy Time Derivation:
Using: Group Velocity, vgroup=∆x/∆t=∆ω/∆k and the de Broglie relation 

∆p=ħ∆k and the Planck Relationship ∆E=ħ∆ω: 

( )( )

( )

( )

( )( )

( )

( )( )
2

2
1
2
1

2
k

2
p

2
px

h

h

h
h

h

h

≥∆∆

≥





 ∆

∆

≥∆∆

≥∆







∆
∆∆

≥∆







∆
∆∆

≥∆∆

Et

Et

t

k
t
k
t

ϖ

ϖ

ϖ
Using Group Velocity

Using de Broglie relation 

Using Planck Relationship 
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Equivalent “momentum space operators” for each real space counterpart.
Postulate 3 (additional information)

Operators in Momentum Space

titi
EVersion)(TimeEnergy Total

pi
V

2
V(x)

x2m
E)Potential(KineticEnergy Total

)(
xi

f)f(p

2x2m2m
pEnergy   Kinetic

xi
pMomentum

pi
f

f(x)f(x)

pi
V

V(x)V(x)Energy   Potential

pixxPosition

tionRepresenta
SpaceMomentum

Operator
QM

tionRepresenta
SpaceReal

Operator
QM

Variable
Dynamical
Classical

Total

x

2

2

2

Total

x

2

2

22
x

x

x

x

x

∂
∂−

∂
∂−









∂
∂−++

∂
∂−+









∂
∂

∂
∂

−

∂
∂









∂
∂

−









∂
∂

−

∂
∂−
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hh2

h

h2

h

h

h

h

m
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m
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There exists a short hand notation known as Dirac notation that simplifies 
writing of QM equations and is valid in either position or momentum space.

Dirac Notation

t)dp(p,ξt)(p,ξ

space, momentum inor 

t)dxΨ(x,ξt)(x,Ψξ

op
*

op

op
*

op

ΦΦ=〉ΨΨ〈

=〉ΨΨ〈

∫

∫

∞

∞−

∞

∞−

Note:  The left side, <Ψ, is known as a “Bra” while the right side, Ψ>, is known 
as a “ket” (derived from the “Bracket” notation). The “ket” is by definition, 
the complex conjugate of the argument.

Dirac notation is valid in either position or momentum space so the variables, 
x, y, z, t, and p can be optionally left out.

t)dxΨ(x,ξt)(x,Ψξ op
*

op ∫
∞

∞−

=〉ΨΨ〈
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The operator acts on the function on the right side:
Dirac Notation

t)dx(x,Ψξt)(x,Ψξ

t)dxΨ(x,ξt)(x,Ψξξ

*
1

*
op221op

op
*

opop

∫

∫

∞

∞−

∞

∞−

=〉ΨΨ〈

=〉ΨΨ〈=〉ΨΨ〈

If you need the operator to act on the function to the left, write it explicitly.

Note that in this example, we have commuted the left hand side (operator and 
Ψ1) with the right hand side (Ψ2).  This is okay.  While not all operators 
commute, any function times another function does commute (i.e. once the 
operator conjugate has acted on the Ψ1* , the result is merely a function which 
always commutes).  Thus, it is the operator that may or may not commute but 
the functions that result from an operator acting on a wave function always 
commute.



ECE 6451 - Dr. Alan DoolittleGeorgia Tech

The Dirac form of Hermiticity is:

Dirac Notation

〉ΨΨ〈=ΨΨ

〉ΨΨ〈=〉ΨΨ〈

= ∫∫
∞

∞−

∞

∞−

21op2op1

*
1op22op1

*
1op

*
22op

*
1

ξξ

ξξ

t)dx(x,Ψξt)(x,Ψt)dx(x,Ψξt)(x,Ψ

or
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The Dirac Delta Function is:
Dirac Delta Function

( )

( )
( )

( ) 1

xxfor 0
xxfor 

2
1

o
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2
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2
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δ
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πσ
δ σ

σ

Some useful properties of the delta 
function are:
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The Dirac Delta Function is:

Dirac and Kronecker Delta Function

( )


 =

≡−
otherwise 0

xxfor  1 o
oxxδ

The Kronecker Delta Function is:





≠
=

≡
ji if    0
ji if    1

δ ij


