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Postulates of Quantum Mechanics

Classical Mechanics describes the dynamical* state variables of a particle as
X, Yy, Z, p, etc...

Quantum Mechanics takes a different approach. QM describes the state of
any particle by an abstract “Wave Function”, W( x, y ,z ,t ), we will describe in
more detail later.

We will introduce Five Postulates of Quantum Mechanics and one
“Governing Equation”, known as the Schrodinger Equation. Postulates are
hypotheses that can not be proven. If no discrepancies are found in nature,

then a postulate becomes an axiom or a “true statement that can not be
proven”. Newton’s 1%t and 2" “Laws” and Maxwell’s equations are axioms
you are probably already familiar with.

*There are also classical static variable such as mass, electronic charge, etc... that do not change during physical processes.
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Postulates of Quantum Mechanics

Postulate 1

*The “Wave Function”, ¥( x,y ,z ,t), fully characterizes a quantum
mechanical particle including it’s position, movement and temporal
properties.

* ¥Y(x,y,z,t)replaces the dynamical variables used in classical mechanics
and fully describes a quantum mechanical particle.

The two formalisms for the wave function:

*When the time dependence is included in the wavefunction, this is called the
Schrodinger formulation. We will introduce a term later called an operator
which is static in the Schrodinger formulation.

In the Heisenberg formulation, the wavefunction is static (invariant in time)
and the operator has a time dependence.

*Unless otherwise stated, we will use the Schrodinger formulation
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Postulates of Quantum Mechanics
Postulate 2

*The Probability Density Function of a quantum mechanical particle is:
X,y ,z,t)¥(X,y,z,t)
*The probability of finding a particle in the volume between v and v+dv is:
(X, y,2,t)¥(x,y,2,t)dv
In 1D, the probability of finding a particle in the interval between x & x+dx is:
Y*(x, t)¥(x,t)dx

*Since “W*( x, t )¥(x, t)dx” is a probability, then the sum of all probabilities must
equal one. Thus,

4.1)

j ¥ (x, O (x,)dx =1 or j ¥ (x,y,z,O¥(x, v, z,)dv =1

*This is the Normalization Condition and is very useful in solving problems. If ¥
fulfills 4.1, then Y is said to be a normalized wavefunction.

Georgia Tech ECE 6451 - Dr. Alan Doolittle




Postulates

of Quantum Mechanics

Postulate 2 (cont’d)

Y(x,y,z,t), the particle “wave functio

n”, 1s related to the probability of finding a particle at

time t in a volume dxdydz. Specifically, this probability is:

‘\P(x, A t){zdxdydz or [‘P*‘dedydz]

But since Y is a probability,

LI T

\P(x,y,z,t)‘zdxdya’z =1

. > *
or in 1D [ [¥"Wdx|=1
o —00
A

0.5

0.4
S 03
Ea

0.2 Introducing the concept of the wave

function, |1,M:J|2dz proportional to
0.1 the probability that the electron may
0.0 > be found in the interval dz at the
‘ o & 2 % “ ‘ point z.

Georgia Tech

Solymar and Walsh figure 3.1
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Postulates of Quantum Mechanics
Postulate 3

Every classically obtained dynamical
variable can be replaced by an
“operator” that “acts on the wave
function”. An operator is merely the
mathematical rule used to describe a
certain mathematical operation. For
example, the “x derivative operator”
is defined as “d/dx”. The wave
function is said to be the operators’
operand, i.e. what is being acted on.

The following table lists the
correspondence of the classical
dynamical variables and their
corresponding quantum mechanical
operator:

Georgia Tech

Classical QM
Dynamical Operator
Variable Representation
Position x X
Potential Energy V(x) V(x)
f(x) f(x)
Momentum p, Ei
1 0x
2 2 2
. p h™ 0
Kinetic Ener —= -
&y 2m 2m 0x°
h o
fi f| —
(p,) (i axj
n o’
Total Energy (Kinetic + Potential) E -——+ V(%)
2m 0x
ho

Total Energy (Time Version) E, ., o
i
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Postulates of Quantum Mechanics
Postulate 4

For each dynamical variable, &, there exists an expectation value, <€> that can be
calculated from the wave function and the corresponding operator ¢, (see table
under postulate 3) for that dynamical variable, . Assuming a normalized ¥,

4.2)
(&) = T‘P*(x, Do, Y(x,0)dx or (¢g)= T\P*(x,y,z, e, Y(x,y,z,t)dv

The expectation value, denoted by the braces <>, is also known as the average
value or ensemble average.

Brennan goes through a formal derivation on pages 28-29 of the text and points
out that the state of a QM particle is unknown before the measurement. The
measurement forces the QM particle to be compartmentalized into a known state.
However, multiple measurements can result in multiple state observances, each
with a different observable. Given the probability of each state, the expectation
value is a “weighted average” of all possible results weighted by each results
probability.
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Postulates of Quantum Mechanics
Postulate 4

Example: Lets assume the wave function of a QM particle is of an observable “x”
is given by: Ax —1<x<1
Y(x,t) =

0 otherwise

We can normalize W (see postulate 2) to get the constant A:

[ 1 2.2 J
1= J“P (x,t)¥(x,t)dx or 1= J‘A x“dx
—00 -1

1 -1 1
=A* 2 = A= \/E ’
-1 3 2 i
Then we can calculate the expectation value of x, <x> as:
(x) = :[I{Ex}{\/gx}dx
30( s 3(1
(x) = 5;[()6 )Jx = E(Zx j
(x)=0

Note: That the probability W*'V of observing the QM particle is 0 at x=0 but
multiple measurements will average to a net weighted average measurement of 0.

2
1=A—x3
3

1
-1
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Postulates of Quantum Mechanics
Postulate 4

As the previous case illustrates, sometimes the “average value” of an observable is
not all we need to know. Particularly, since the integrand of our <x> equation was
odd, the integrand was 0. (Looking at whether a function is even or odd can often
save calculation effort). We may like to also know the “standard deviation” or the
variance (standard deviation squared) of the observable around the average value.
In statistics, the standard deviation is:

N (S .

And since <x>=0, all we need is: -1
1

<x2> = ]i‘P*(x, HO)x*¥(x,t)dx or %J;xxzx dx

1 3

a\/ \/j\fows

Similarly, we could also calculate other higher order moments of distributions

such as skewness, curtosis, etc...
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Postulates of Quantum Mechanics
Postulate 4

Real world, measurable observables need to be “real” values (i.e. not imaginary /
complex). What makes for a real expectation value? To answer this, we need to
consider some properties of operators and develop (work toward) the concept of a
“Hermitian Operator”.

Eigenfunctions and Eigenvalues:

If the effect of an operator acting on an operand (wave function in our case) is
such that the operand is only modified by a scalar constant, the operand is said to
be an Eigenfunction of that operator and the scalar is said to be an Eigenvalue.

Example:

Cop ¥ (X, 1) = A Y(X,1)

Operator/

Eigenfunction Eigenvalue
of Operator & Operand
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Postulates of Quantum Mechanics
Postulate 4

Example: consider the case of an exponential function and the differential
operator

d

Gop e

P(x,t) = e

Eigenfunction Eigenvalue
of derivative Operand
operator

Eigenfunctions and Eigenvalues are very important in quantum mechanics and
will be used extensively. KNOW THEM! RECOGNIZE THEM! LOVE THEM!
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Postulates of Quantum Mechanics
Postulate 4

Linear Operators:
An operator 1s a linear operator if it satisfies the equation
CopC Y (X, 1) = G, (X, 1)
where c 1s a constant.

0. .. o :
. is a linear operator where as the logarithmic operator log() is not.

Unlike the case for classical dynamical values, linear QM operators generally do
not commute. Consider:
Classical Mechanics: xp = px

Quantum Mechanics :  xp  ‘V(x,1) ~ P, XY (x,1)

h d (h d
X(T EJT(X’ t) :(T EJXLP(X’ t)

X(ﬁ ij\P(X, t) # (E Y(x, t)j + x(ﬁ dij‘P(X, t)
1

1 dx 1 dx
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Postulates of Quantum Mechanics
Postulate 4

If two operators commute, then their physical observables can be known
simultaneously.

However, if two operators do not commute, there exists an uncertainty
relationship between them that defines the relative simultaneous knowledge of
their observables. More on this later...
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Postulates of Quantum Mechanics

Postulate 4: A “Hermitian Operator” (operator has the property of Hermiticity)
results in an expectation value that is real, and thus, meaningful for real world
measurements. Another word for a “Hermitian Operator” is a “Self-Adjoint
Operator”. Let us work our way backwards for the 1D case:

(&) = T‘P*(X, )G, Y (X, )dx

If (&)1s real and the dynamical variable is real (i.e. physically meaningful) then,
E=g* and (&)= (&Y
This says nothing about & | as in general, &, # izp

Thus taking the conjugate of everything in the above equation,

(&) = T P(x, e, P (%, t)dx

This
Tt a7 RN equation is
@ = [¥ (x5, P 0dx = (87) = [Wex e, ¥ (k. ndx  +—— 1
bt T simply the
more generally an operator is said to be hermician if it satisfies : case where
Y=Y,

j ¥ (x, 0, P, (%, )dx = j ¥, (x, 0 P (X, H)dx

Georgia Tech ECE 6451 - Dr. Alan Doolittle




Consider two important properties of a “Hermitian Operator”

Postulates of Quantum Mechanics
Postulate 4

1) Eigenvalues of Hermitian Operators are real, and thus, measurable quantities.

Proof:

Georgia Tech

Hermiticity states,
j ¥ (x, O, P(x, )dx = j P(x, 06 P (%, )dx
Consider first the left side,

j ¥ (x, O, P(x, )dx = j P (x, A P(x, t)dx

=, [ W7 (x, O¥(x, ydx
Now consider the right hand side,

j P(x, e, P (x, )dx = j P(x, AP (x, t)dx

=\ j P(x, O (x, )dx

Thus, A, = A, which is only trueif A is real.
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Postulates of Quantum Mechanics
Postulate 4

Consider two important properties of a “Hermitian Operator”

2) Eigenfunctions corresponding to different and unequal Eigenvalues of a
Hermitian Operator are orthogonal. Orthogonal functions of this type are
important in QM because we can find a set of functions that spans the entire QM
space (known as a basis set) without duplicating any information (i.e. having the
one function project onto another).

Formally, functions are orthogonal if they satisfy :
j P (x, O, (x, )dx = 0

Thisis trueif ¢ 1s hermician and,
iop\Pl(Xﬂ =AY (x,t) and iop\PZ(X9 =A%, (1)
and A, # A,

See Brennan section 1.6 for details
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Postulates of Quantum Mechanics
Postulate 5

Probability current density is conserved.

If a particle is not being created or destroyed it’s integrated probability always
remains constant (=1 for a normalized wave function). However, if the particle is
moving, we can define a “Probability Current Density” and a Probability
Continuity equation that describes the particles’ movement through a Gaussian
surface (analogous to electromagnetics). Brennan, section 1.5 derives this concept
in more detail than I wish to discuss and arrives at the following:

Define Probability Density=p = ¥"(r)¥(r)

j=

Define Probability Current Density (see Brennan section1.5) = i (‘P (r)

2mi

Probability Current Density Continuity Equation

Vei+ P _o
ot

p=P*¥
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Postulates of Quantum Mechanics
Postulate 5

Basically this expression states that the wave function of a quantum mechanical
particle is a smoothly varying function. In an isotropic medium, mathematically,
this is stated in a simplified form as:

Lim
Y(x,t)=Y¥(x,,?)
XX,
and
Lim 0

—WY(x,t) =—Y(x .t
X — X, Ox (1) Ox (%o-1)

x=Xx,

Simply stated, the wave function and it’s derivative are smoothly varying (no
discontinuities) . However, in a non-isotropic medium (examples at a
heterojunction where the mass of an electron changes on either side of the junction
or at an abrupt potential boundary) the full continuity equation MUST be used.
Be careful as the above isotropic simplification is quoted as a Postulate in MANY
QM texts but can get you into trouble (see homework problem) in non-isotropic
mediums. When in doubt, use

p= ¥R = (V) - T () Vel Lo
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Postulates of Quantum Mechanics
Example using these Postulates

Consider the existence of a wave function (Postulate 1) of the form:

P(x)= {A(I +cos(x)) for -m<x<m

0 for x<-m xX2>m

yix)= A (1 + cosx)
for x| <mn

=Y

Figure after Fred Schubert with gratitude.
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Postulates of Quantum Mechanics
Example using these Postulates

Consider the existence of a wave function (Postulate 1) of the form:

Y(x)= {A(l teos(x)) for -m<x<m

0 for x<-m xX2>m

Applying the normalization criteria from Postulate 2:
j ¥ (x, )P (x, )dx = 1

IAZ(I +cos x )1+ cos x)dx =1

Azj(l+200sx+cos2x);lx:1
, . 1 1. "
Al x+2sinx+—x+—sin2x =1
2 4

-

A*(37) =1
L
"
1
\P(X){@(ncos(x» for msxsn
0 for x<-m xX2>m
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Postulates of Quantum Mechanics
Example using these Postulates

Show that this wave function obeys the Probability Continuity
Equation (Postulate 5) at the boundaries x=+/-m:

1
‘P(x): ﬁ(l+cos(x)) for -m<x<m

0 for x<-m xX2>m

Define Probability Density=p =¥~ (r)‘P(r)

o, :L(1+200sx+cos2 x)

RY/4

p 1s independent of time so % =0

s0 VW¥(x) = V" (x) = ———sin x

3z

*

—

(V¥ (x) - W)V (x))

i= 2Zi (( \/;7, (1+ cos x)j(— ﬁsm xj _ (ﬁ (1+ cos x)j(— \/;_,; sin XD _0

Probability Current Density Continuity Equation

Probability Current Density = 3 = ZL (‘P
mi

= = 0
Vei+P -040=0
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Postulates of Quantum Mechanics
Example using these Postulates

Show that this wave function obeys the smoothness constraint
(Postulate S for isotropic medium) at the boundaries x=+/-m:

1
‘P(x) _ {@ (l + cos(x)) for -m<x<m

0 for x<-m xX2>m

Lim 1 |
— 1 =—1
L%(m_ﬂ)} L (1+cos)= (1 cosr)

O=0forx=-7rorrx

and
Lim | |
- sinx = — sin 7z
x—>m(or-m)| 37 N3

O=0forx=-7rorx

Thus, the wave function and its derivative are both zero and continuous at
the boundary (same for x=-m).
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Postulates of Quantum Mechanics
Example using these Postulates

What is the expected position of the particle? (Postulate 3)

1
‘P(x): f(l+cos(x)) for -m<x<m

3
0 for x<-m xX2>m

<x> = T‘P*x‘l’dx

<x> = {Oﬁ (1+cosx)x \/;_7[ (1+cosx)dx
(x) = % j(l +2cosx +cos’ x)xdx
T

-

Since the function in parenthesis is even and “x” is odd, the product
(integrand) is odd between symmetric limits of x=+/-t). Thus,

<x>=0

Note: Postulate 4 is not demonstrated because Y is not an Eigenfunction of any operator.
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Momentum-Position Space and Transformations

-

1 f ] 1 [ —ipx
¥(x)= NG J.q)(p)e’px/hdp D(p)= oY J.‘P(x)e P dx

If LI’(x) 1s normalized then so 1s CD(p)

[ (w(x)ix = [0 (p)D(p)dp = 1

If a state is localized in position, x, it is delocalized in momentum, p. This leads us to a fundamental
quantum mechanical principle: You can not have infinite precision measurement of position and
momentum simultaneously. If the momentum (and thus wavelength from p=h/A) is known, the
position of the particle is unknown and vice versa.

For more detail, see Brennan p. 24-27
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Momentum-Position Space and Transformations

‘mwm]mmumm-n. SSPVADIVN

_p2p?

#(p)=be >

The above wave function is a superposition of 27 simple plane waves and creates a net wave function
that is localized in space. The red line is the amplitude envelope (related to W*WV). These types of
wave functions are useful in describing particles such as electrons. The wave function envelope can
be approximated with a Gaussian function in space. Using the Fourier relationship between space and
momentum, this can be transformed into a Gaussian in momentum (see Brennan section 1.3). The

widths of the two Gaussians are inversely related.
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Momentum-Position Space and Transformations

#(p)=be "

The widths of the two Gaussians are inversely related. Thus, accurate knowledge of position leads to
inaccurate knowledge of momentum.
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Uncertainty And the Heisenberg Uncertainty Principle

Due to the probabilistic nature of Quantum Mechanics, uncertainty in

measurements is an inherent property of quantum mechanical systems.
Heisenberg described this in 1927,

For any two Hermitian operators that do not commute (i.e. BypAgpZAopBop )
there observables A and B can not be simultaneously known (see Brennan
section 1.6 for proof). Thus, there exists an uncertainty relationship between
observables whose Hermitian operators do not commute.

Note: if operators A and B do commute (i.e. AB=BA) then the observables
associated with operators A and B can be known simultaneously.
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Uncertainty And the Heisenberg Uncertainty Principle

Consider the QM variable, &, with uncertainty (standard
deviation) A defined by the variance (square of the
standard deviation or the mean deviation),

(ALY =<E>—<E>?

A is the standard/mean deviation for the variable & from
its expectation value <¢>

There are two derivations of the Heisenberg Uncertainty
Principle in QM texts. The one in Brennan is more
precise, but consider the following derivation for it’s
insight into the nature of the uncertainty. Brennan’s
derivation will follow.
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Uncertainty And the Heisenberg Uncertainty Principle

Insightful Derivation:

Consider a wave function with a Gaussian distribution defined by:

2
—X

LP(x) = 4, e

(AEW27

The normalization constant can be determined as,

4, = (4z)1(ag)
Taking the Fourier transformation of this function into the momentum space
we get, <
Y 1 J‘ P

(D(p): \/ﬁ

7 h
x)e ipx/h gy

J‘ 47[ /\/ A§ e P
A2 Af 2 The standard

deviation in
momentum space is
inversely related to

h 1 2|
(D( p) = (47T )% e oo the standard deviation

®(p)=

(Af ) \/ﬂ ( h j in position space.
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Uncertainty And the Heisenberg Uncertainty Principle
Insightful Derivation:

The standard deviation in momentum space is inversely related to the
standard deviation in position space.

Defining: o, =(A&)and o,=h /(AE)
Position Space Momentum Space
(47[)14 Ox 2op? 477
Y(x)= e D(p)=
(x) _— (p)= - F
w)- e )t

\/g\/i ®(p):@me

6. =(Ax)and o, = (Ap)

‘ AXAp =h ‘

o, =(Ax)

X
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Uncertainty And the Heisenberg Uncertainty Principle
Precise Derivation:

The solution for the Gaussian distribution is exact only for that distribution.
However, the assumption of a Gaussian distribution overestimates the
uncertainty in general. Brennan (p. 46-48) derives the precise “General”
Heisenberg Uncertainty Relationship using:

A) If two operators do not commute (i.e. ABZBA) in general a relationship
can be written such that AB-BA=iC

B) Given (A) the following property proven true by Merzbacher 1970:
(AA)? (AB)? = 0.25C2
Thus, given the position operator, X, and momentum operator, p.=(h/i)(d/dx),
Xp, = px =1C
Letting this operate on wave function ¥
(xp, — p,x)¥ =iC¥
(Xﬁi —zixj‘l’ =1CY¥Y
1dx 1dx
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Uncertainty And the Heisenberg Uncertainty Principle

Precise Derivation (cont’d):

A) If two operators do not commute (i.e. ABZBA) in general a relationship
can be written such that AB-BA=iC

B) Given (A) the following property proven true by Merzbacher 1970:

2 2 2
(AA? (ABP2025C*

Letting this operate on wave function ¥
(xp, —p,x)¥ =iC¥

(Xzi—zixj‘{':iC\P
1dx 1dx
Xéiq’—zi(x‘l’)zi@{’
1 dx 1 dx
(xzi‘}’]—zq’—(xzi‘}’j:m‘}’
1 dx 1 1 dx
—é‘PziC‘I’
i
h=C
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Uncertainty And the Heisenberg Uncertainty Principle

Precise Derivation (cont’d)

Thus, since (AA)? (AB)? > 0.25C2, with in this case, AA=Ax and AB=Ap,

Xpy — P X =17
For this case, the uncertainies associated with x 1s Ax, and p_ 1s Ap must be related to 7

(e (apy >[4

2

(ax)ap)> 2

Note the extra factor of 5.

Georgia Tech ECE 6451 - Dr. Alan Doolittle




Uncertainty And the Heisenberg Uncertainty Principle

Energy Time Derivation:

Using: Group Velocity, v,,,,,=Ax/At=Aw/Ak and the de Broglie relation
Ap=hAk and the Planck Relationship AE=hA®:

AtA@
Using Group Velocity— ( j(AP) z

Using de Broglie relation—»( Ak

(ACYAE)> g
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Georgia Tech

Operators in Momentum Space
Postulate 3 (additional information)
Equivalent “momentum space operators” for each real space counterpart.

. QM QM
Classical
. Operator Operator
Dynamical
. Real Space Momentum Space
Variable ) .
Representation Representation
_h 0
Position x X i0p,
o 8o
Potential Energy V(x) V(x) i Op,
(1o
f(x) f(x) i dp,
0 N
Momentum p, E— P
i Ox
2 2 2
L N 2 0 D
Kinetic Ener — - —
Y 2m 0x 2m
h O
f(p.) f (—a—j S(ps)
1 0x
Total Energy (Kinetic + Potential) E 0y LN B
otal Ener inetic + Potentia ot - X -
&y Toul 2m Ox 2m i op
. . n o B O
Total Energy (Time Version) Eq,q - -
i0t i 0t
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Dirac Notation

There exists a short hand notation known as Dirac notation that simplifies
writing of QM equations and is valid in either position or momentum space.

(¥

Sop| T) = ]?‘P*(X, ), P(x, t)dx

or In momentum space,

(FlCop

¥y = [@(p, 0k, D(p, )dp

Note: The left side, <, is known as a “Bra” while the right side, ¥>, is known
as a “ket” (derived from the “Bracket” notation). The “ket” is by definition,
the complex conjugate of the argument.

(17 )

(PIE,,|¥) = | 7 (x, ), P(x, t)dx

Dirac notation is valid in either position or momentum space so the variables,
X, Y, Z, t, and p can be optionally left out.
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Dirac Notation
The operator acts on the function on the right side:

(PG| V) = (¥

Z:nop

Cop V) = T‘P*(X, G T(X, t)dx

If you need the operator to act on the function to the left, write it explicitly.

<iop\{’1 ‘\P2> — J‘ LII2 (X9 tKZp\PT(Xa t)dX

Note that in this example, we have commuted the left hand side (operator and
¥,) with the right hand side (¥,). This is okay. While not all operators
commute, any function times another function does commute (i.e. once the
operator conjugate has acted on the W,* , the result is merely a function which
always commutes). Thus, it is the operator that may or may not commute but
the functions that result from an operator acting on a wave function always
commute.
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Dirac Notation
The Dirac form of Hermiticity is:

j P, (x, 6, P, (%, H)dx = j ¥, (x, O ¥, (x, t)dx

(‘F, P))

EJop \P2> = <LP2

Sop

or

<\Pl EéopLII2> = <aop\Pl‘\{12>

Georgia Tech
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Dirac Delta Function
The Dirac Delta Function is: o
5(x-x,)=lim— e[_z( 2 J
2

o—0

0 forx =x,
S(x—x,)=0 forx #x,

I5x X, )dx =1

Some useful properties of the delta
function are:

5(x)=6(-x) 0
5(ax) = éa(x)

f(0)8(x—x,)= f(x,)5(x - x,)

Slx—x )= forx #x,

f(x)6(x = x, )dx = f(x,)

d d
f— S(x = x, )dx = —— ()

X=X,

Georgia Tech
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Dirac and Kronecker Delta Function

The Dirac Delta Function is:

5( ) lforx =x,
X—x )=
? 0 otherwise

The Kronecker Delta Function is:

1 ifi=j
0, = e
P10 ifi#
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