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Lecture 6

Schrödinger Equation and relationship to electron 
motion in crystals

Reading:  

Notes and Brennan Chapter 2.0-2.4, 7.4, 8.0-8.2 and 
2.5-2.6



ECE 6451 - Dr. Alan DoolittleGeorgia Tech

Schrödenger Equation

So how do we account for the wavelike nature of small particles like electrons?

Schrödenger Equation:

•In “Electrical Properties of Materials”, Solymar and Walsh point out that. Like 
the 5 Postulates, there are NO physical assumptions available to “derive” the 
Schrödenger Equation

•Just like Newton’s law of motion, F=ma, and Maxwell’s equations, the 
Schrödenger Equation was proposed to explain several observations in physics 
that were previously unexplained.  These include the atomic spectrum of 
hydrogen, the energy levels of the Planck oscillator, non-radiation of electronic 
currents in atoms, and the shift in energy levels in a strong electric field.

In Schrödinger’s fourth paper he ends with:

“ I hope and believe that the above attempt will turn out to be useful for 
explaining the magnetic properties of atoms and molecules, and also the electric 

current in the solid state”.
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Schrödenger Equation
So how do we account for the wavelike nature of small particles like electrons?

Schrödenger Equation:
•Lets start with the Classical Hamiltonian and substitute in the operators that correspond to the 
classical state variables.
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Since the left hand side varies only with position, and the right hand side varies only with time, 
the only way these two sides can equate is if they are equal to a constant ( we will call this 
constant, total energy, E).  Thus, we can break this equation into two equations:

To solve the Schrödinger equation one must make an assumption about the wave function.  Lets 
assume the wave function has separate spatial and temporal components:

)(),,(),,,( twzyxtzyx Ψ=φ
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Consider first the time variable version (right side) then later we will examine the spatially 
variable portion.  This will give us time variable solutions and, later, a separate spatially variable 
solution.

Schrödenger Equation
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Consider the time variable solution:

t
w

w
iE

∂
∂

=
1

h

wEi
t
w







−=

∂
∂

h

( )ti
tEi

etwetw ω−














−

== )(or       )( h

This equation expresses the periodic time nature of the wave equation.

ωh= Ewhere

Schrödenger Equation
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Consider the space variable solution:
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Introduction to Quantum Mechanics 
Consider a specific solution for the free space (no electrostatic potential, V=0) wave solution is 
(electron traveling in the +x direction in 1D only):

Since we have to add our time dependent portion (see (*) previous) our total solution is:
( ) ( )kxtikxti BeAetwx +−−− +=Ψ=Ψ ωω)()(

This is a standard wave equation with one wave traveling in the +x direction and one wave traveling in 
the –x direction.  Since our problem stated that the electron was only traveling in the +x direction, B=0.

Classically, momentum, p=mv and kinetic energy is ½ (mv2) = ½ (p2)/m
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Introduction to Quantum Mechanics
An interesting aside:  What is the value of A? 

Since Ψ is a probability, 

This requires A to be vanishingly small (unless we restrict our universe to finite size) and is the same 
probability for all x and t.  More importantly it brings out a quantum phenomena:  If we know the 
electrons momentum, p or k, we can not know it’s position!  This is a restatement of the uncertainty 
principle:

∆p ∆x ≥ ħ/2

Where ∆p is the uncertainty in momentum and ∆x is the uncertainty in position
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Introduction to Quantum Mechanics
The solution to this free particle example brings out several important observations about the 
dual wave-particle nature of our universe:

Classically, momentum, p=mv and kinetic energy is (mv2)/2 =(p2)/2m

( )kxtiAetwx −−=Ψ=Ψ ω)()(
•While particles act as waves, their charge is carried as a particle.  I.e. you can only say that there is a 
“probability” of finding an electron in a particular region of space, but if you find it there, it will have 
all of it’s charge there, not just a fraction.

•Energy of moving particles follows a square law relationship:
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Introduction to Quantum Mechanics
What effect does this “E-k” square law relationship 
have on electron velocity and mass?

The group velocity (rate of energy delivery) of a wave 
is:
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So the “speed” of an electron in 
the direction defined by p is found 
from the slope of the E-k diagram.

Similarly, since

So the “effective mass” of an 
electron is related to the local 
inverse curvature of the E-k 
diagram

Note: Brennan section 8.1 rigorously derives the equation for vg and m*

Figure after Mayer and Lau Fig 12.2
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What effect does an electrostatic potential have on an electron?
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Consider the electron moving in an electrostatic potential, Vo.  The wave solution is (electron 
traveling in the +x direction in 1D only):

Since we have to add our time dependent portion (see (*) previous) our total solution is:
( ) ( )kxtikxti BeAetwx +−−− +=Ψ=Ψ ωω)()(

This is, again, a standard wave equation with one wave traveling in the +x direction and one wave 
traveling in the –x direction.  Since our problem stated that the electron was only traveling in the +x 
direction, B=0.

When the electron moves through an electrostatic potential, for the same energy as in free space, the 
only thing that changes is the “wavelength” of the electron.
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Localized Particles Result in Quantized Energy/Momentum:  
Infinite Square Well

First a needed tool:  Consider an electron trapped in an energy well with infinite potential barriers.  
The reflection coefficient for infinite potential was 1 so the electron can not penetrate the barrier.

After Neudeck and Pierret Figure 2.4a
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What does it mean?

After Neudeck and Pierret Figure 2.4c,d,e
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A standing wave results from 
the requirement that there be a 
node at the barrier edges (i.e. 
BC’s: Ψ(0)=Ψ(a)=0 ) .  The 
wavelength determines the 

energy.  Many different 
possible “states” can be 

occupied by the electron, each 
with different energies and 

wavelengths.

Localized Particles Result in Quantized Energy/Momentum:  
Infinite Square Well
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What does it mean?

After Neudeck and Pierret Figure 2.5
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Recall, a free particle has E ~k2.  
Instead of being continuous in k2, E 

is discrete in n2!  I.e. the energy 
values (and thus, wavelengths/k) of a 
confined electron are quantized (take 
on only certain values).  Note that as 
the dimension of the “energy well”

increases, the spacing between 
discrete energy levels (and discrete k 

values) reduces.  In the infinite 
crystal, a continuum same as our free 

particle solution is obtained.

Solution for much larger “a”.  Note: 
offset vertically for clarity.

Localized Particles Result in Quantized Energy/Momentum:  
Infinite Square Well
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What about an electrostatic potential step?
Consider the electron incident on an electrostatic potential barrier, Vo.  The wave solution (1D 
only):

We have already solved these in regions I and II.  The total solution is:
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What about an electrostatic potential step?
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When the “wave” is incident on the barrier, some of it is reflected, some of it is 
transmitted.  However, since there is nothing at x=+∞ to reflect the wave back, BII=0.
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What about an electrostatic potential step?

We can apply our probability current density concept,

to define transmission, T, and reflection coefficients, R, such that the transmission 
and reflection probability is

cont’d...
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What about an electrostatic potential step?

Thus, 

cont’d...
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This transmission probability is dramatically different from that quoted in MANY quantum 
mechanics texts INCLUDING Brennan’s.  The above form (based on current flow) is valid for all 
cases, but the bottom form is valid for only E≥Vo.  Before we consider the case of E<Vo, it is worth 
considering where the error in these text (including ours) comes from.
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What about an electrostatic potential step?

( ) ( )xkti
I

xkti
IIII

II eBeAtwx +−−− +=Ψ=Ψ ωω)()(

When the “wave” is incident on the barrier, some of it is reflected, some of it is 
transmitted.  However, since there is nothing at x=+∞ to reflect the wave back, BII=0.

If we use the simpler boundary condition, ψ is a wave, both ψ and it’s first derivative 
must be continuous across the boundary at x=0 for all time, t.  Thus,
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What about an electrostatic potential step?

cont’d...
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We can define a “reflection coefficient” as the amplitude of the reflected wave relative 
to the incident wave,
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What about an electrostatic potential step?

And likewise, we can define a transmission coefficient as the amplitude of the transmitted wave 
relative to the incident wave, T=AII/AI
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Notice that this approach is missing the 
factor (kII/kI).  BIG ERROR!  For this 
erroneous approach, T*T + R*R  ≠ 1.
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What about an electrostatic potential step?

Final details:
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What about an electrostatic potential step?

Consider 2 cases:  Case 1:  E>V

Both kI and kII are real and thus, the particle travels as a wave of different wavelength in the two 
regions.

However, R*R is finite. Thus, even thought the electron has an energy, E, greater than V it will have a 
finite probability of being reflected by the potential barrier.

If E>>V, this probability of reflection reduces to ~0 (kI kII)
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What about an electrostatic potential step?

Case 2:  E<V

kI is real but kII is imaginary.  When an imaginary kII is placed inside our exponential, e(ik
II
x), a decaying 

function of the form, e(-ax) results in region II.

However, T*T is now finite but evanescent.  Evanescent waves carry no current (see homework).  So 
even though the electron has an energy, E, less than V it will have a finite probability of being found 
within the potential barrier.  The probability of finding the electron deep inside the potential barrier is ~0 
due to the rapid decay of ψ.
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What about an electrostatic potential step?

Consider the following potential profile with an electron of energy E<Vo.

Vo

x
Region I

Region II

x=0 x=a

The electron has a finite probability to “tunnel” through the barrier and will do so if the barrier is thin 
enough.  Once through, it will continue traveling on it’s way.

Region III

Iλ IIλ IIIλ

E>Vo

E<Vo
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What about an electrostatic potential step?

Consider the following potential profile 
with an electron of energy E<Vo.

Vo

x
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Region II

x=0 x=a
Region III
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What about an electrostatic potential step?

As was found before for the currents,

2
*

2
*

A
BR         R

A
FTT   ≡≡∴

Vo

x

Region I Region II

x=0 x=a

Region III

( )xktiBe 1+− ω

( )xktiAe 1−− ω

( )xktiDe 2+− ω

( )xktiCe 2−− ω ( )xktiFe 1−− ω
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What about an electrostatic potential step?

Homework!

?R         R?TT ** ==

Vo

x

Region I
Region II

x=0 x=a

Region III

( )xktiBe 1+− ω

( )xktiAe 1−− ω

( )xktiDe 2+− ω

( )xktiCe 2−− ω ( )xktiFe 1−− ω

Hint: Use a combination of the continuity of the wave function and continuity of 
the probability density current (or equivalently in this case, the continuity of the 
derivative).
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Multiple/Periodic Potential Barriers: 
Kronig-Penney Model

Resonant reflectance/transmission creates “standing waves” in the crystal.  Only certain 
wavelengths (energies) can pass through the 1D crystal.

By analogy, a multiple layer optical coating has similar reflection/transmission 
characteristics.  The result is the same, only certain wavelengths (energies) are transmitted 
through the optical stack.  In a since, we have an “optical bandgap”.
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Now consider an periodic potential in 1D
Kronig-Penney Model:  Bloch Functions Explained

Since each unit cell is indistinguishable from the next, the probability of finding an 
electron in one unit cell is identical to that of finding it in an adjacent unit cell.  

The Bloch theorem states that since the potential repeats every “a” lengths, the 
magnitude of the wavefunction (but not necessarily the phase) must also repeat every 
“a” lengths.  This is true because the probability of finding an electron at a given point 
in the crystal must be the same as found in the same location in any other unit cell.
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Now consider an periodic potential in 1D
Kronig-Penney Model:  Bloch Functions Explained
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Since

The wavefunction in one unit cell is 
merely a phase shifted version of the 
wavefunction in an adjacent unit cell.

Thus, the probability of finding an electron in one unit cell is identical to that of finding it in 
an adjacent unit cell – as expected.

To achieve this property, the MAGNITUDE of the wavefunction (but not necessarily the wavefunction) must have 
the same periodicity as the lattice.  Thus, we choose a wavefunction that is modulated by the periodicity of the 
lattice.
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An Important Aside:  Effect of Bloch Functions
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Thus, if N (the number of unit cells available) is very large, like in a semiconductor, the spacing between the 
allowed k-values (kn=2-kn=1 etc... are almost continuous, justifying the treatment of the k-states as a 
continuum.

Assuming a large number of unit cells in a material, N, the boundary condition for the system is Na 
translations must result in the wavefunction being translated to return to itself? (The probability at the 
material edges must be symmetric and equal).
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Now consider an periodic potential in 1D
Kronig-Penney Model

Consider what potentials an electron would see as it moves 
through the lattice (limited to 1D for now). The electrostatic 
potential, V(x) is periodic such that V(x+L)=V(x).  

After Neudeck and Peirret Fig 3.1

We MUST have standing waves in the crystal that have a 
period equal to a multiple of the period of the crystal’s 
electrostatic potential. (Similar to a multilayer antireflection
coating in optics)

It is important to note that since, the wavefunction repeats 
each unit cell, we only have to consider what happens in one 
unit cell to describe the entire crystal.  Thus, we can restrict
ourselves to values of k such that –π/a to +π/a (implying ka 
≤1 or (2π/λ)a≤1)
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Now consider a periodic potential in 1D
Kronig-Penney Model

Assumptions of Kronig-Penney Model:

•Simplifying the potential to that shown 
here:

•1D only

•Assume electron is a simple plane wave of 
the form, 

...modulated by a function with the 
same periodicity as the periodic 
crystalline potential, U(x)

•The crystalline potential is periodic, 
U(x)=U(x+L)

•Thus the wave function is a simple plain 
wave modulated by a function with the 
same periodicity as the periodic crystalline 
potential:

ikxe

ikx(x)eu(x) nk=Ψ
Neudeck and Peirret Fig 3.2

The question “how does the presence of a periodic 
potential effect the free electron” can thus be 
converted to the question “what effect on the 
electron does the changing of an electron’s free state 
(plane wave) to a Bloch state”?
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Kronig-Penney Model
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For 0<x<a: For -b<x<0:

)cos()sin()( xBxAxa αα +=Ψ )cos()sin()( xDxCxb ββ +=Ψ
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Kronig-Penney Model
For 0<x<a: For -b<x<0:

)cos()sin()( xBxAxa αα +=Ψ )cos()sin()( xDxCxb ββ +=Ψ

Applying the following boundary conditions:
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BC for continuous 
wave function at the 
boundary

BC for periodic wave 
function at the 
boundary
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Kronig-Penney Model

[ ]
[ ])sin()cos()sin()cos(

)cos()sin()cos()sin(
)(

)(

bDbCeaBaA
bDbCeaBaA

CA
DB

baik

baik

ββββαααα

ββαα

βα

+=+

+−=+

=
=

+

+

Applying the boundary conditions, we get:

Eliminating the variables C and D using the above equations, we get:
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A and B are only non-zero (non-trivial solution) when the determinate of the above 
set is equal to zero. 
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Kronig-Penney Model
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Taking the determinate and simplifying we get: 

Plugging in the definitions for α and β we get:
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The right hand side is constrained to a range of +/- 1 and is a function of k only.  The limits of 
the right hand side (+/- 1) occurs at k=0 and +/- π/(a+b) where a+b is the period of the crystal 
potential.

The left hand side is NOT constrained to +/- 1 and is a function of energy only.
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Kronig-Penney Model

Within these “forbidden energy 
ranges”, no solution can exist (i.e. 
electrons can not propagate.

Various “Bands or allowed energy” exist 
where the energy E is a function of the 
choice of k (see solution equation)
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The right hand side is constrained to a range of +/- 1 and is a function of k only.  The limits of 
the right hand side (+/- 1) occurs at k=0 to +/- π/(a+b).

The left hand side is NOT constrained to +/- 1 and is a function of energy only.

π== 22

22 

 where,case specific for the                                                

hh
oo mUbmUa



ECE 6451 - Dr. Alan DoolittleGeorgia Tech

Kronig-Penney Model
Replotting the previous result in another form recognizing the lower k limit is shared by + and –
π/(a+b) while the upper limit is for k=0.

There are at most 2 k-values for each allowed energy, E

The slope, dE/dK is zero at the k-zone boundaries at k=0, k= – π/(a+b) and k= + π/(a+b)  Thus we 
see that the velocity of the electrons approaches zero at the zone boundaries.  This means that the 
electron trajectory/momentum are confined to stay within the allowable k-zones.

Figures after Neudeck and Peirret

Note: k-value solutions differing by 2π/(a+b) are indistinguishable
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Kronig-Penney Model
Replotting the previous result in another form ...

Note: k-value solutions differing by 2π/(a+b) are indistinguishable.  Also 
due to animations printed version does not reflect same information.

Free Space E-k 
diagram

0 π/(a+b) 2π/(a+b) 3π/(a+b)−π/(a+b)−2π/(a+b)−3π/(a+b)

1st Brillion 
Zone

2nd

Brillion 
Zone

2nd

Brillion 
Zone

3rd

Brillion 
Zone

3rd

Brillion 
Zone

The presence of the 
periodic potential 
breaks the “free space 
solution” up into 
“bands” of 
allowed/disallowed 
energies.  The 
boundaries of these 
bands occurs at 
k=±π/(a+b)
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Now consider an periodic potential in 1D
Kronig-Penney Model

After Neudeck and Peirret Fig 4.1
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What is the Importance of k-
Space Boundaries at k=(+/-)π/a?

Crystal Structures, Brillouin 
Zones and Bragg Reflection



ECE 6451 - Dr. Alan DoolittleGeorgia Tech

2π/a

a

Concept of a Reciprocal Space 
(Related to the Fourier Transform)

Real 
Space

Reciprocal 
Space
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Importance of k-Space Boundaries at k=(+/-)π/a
Crystal Structures, Brillouin Zones and Bragg Reflection

The crystal reciprocal 
lattice consists of a 
periodic array of 
“inverse-atoms”( more 
explanation to come 
later).

½ G

G

reflection internal for total Condition n Reflectio   Bragg   
2
1

2
1

1

2

≡=•
→→→

GGk

k1

Surface made from 
all such planes is 
the 1st Brillouin 
Zone.  The 
Brillouin zone 
consists of just 
those k vectors for 
which Bragg 
Reflection occurs.

Since |G|=2π/a 
then | ½G|=π/a 
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Importance of k-Space Boundaries at k=(+/-)π/a
Crystal Structures, Brillouin Zones and Bragg Reflection
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Real Space Crystal

Electrons are represented by “standing 
waves” of wavefunctions localized 
near the atom cores (i.e. valence 
electrons) and as far away from the 
cores as possible (i.e. free electrons).  
Given the different potential energies 
in both of these regions, the energies 
of the electrons away from the atom 
cores is higher.  This is one 
explanation for the origin of the 
energy bandgap.


