Georgia Tech

Lecture 6

Schrodinger Equation and relationship to electron

motion in crystals

Reading:

Notes and Brennan Chapter 2.0-2.4, 7.4, 8.0-8.2 and

2.5-2.6
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Schrodenger Equation

So how do we account for the wavelike nature of small particles like electrons?

Schrodenger Equation:

In “Electrical Properties of Materials™, Solymar and Walsh point out that. Like
the 5 Postulates, there are NO physical assumptions available to “derive” the
Schrodenger Equation

Just like Newton’s law of motion, F=ma, and Maxwell’s equations, the
Schrodenger Equation was proposed to explain several observations in physics
that were previously unexplained. These include the atomic spectrum of
hydrogen, the energy levels of the Planck oscillator, non-radiation of electronic
currents in atoms, and the shift in energy levels in a strong electric field.

In Schrodinger’s fourth paper he ends with:

“1 hope and believe that the above attempt will turn out to be useful for
explaining the magnetic properties of atoms and molecules, and also the electric
current in the solid state”.
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Schrodenger Equation
So how do we account for the wavelike nature of small particles like electrons?

Schrodenger Equation:

Lets start with the Classical Hamiltonian and substitute in the operators that correspond to the
classical state variables.

Energy
“operator”

Kinetic energy
“operator”
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Schrodenger Equation

To solve the Schrodinger equation one must make an assumption about the wave function. Lets
assume the wave function has separate spatial and temporal components:

*P(x,p,z,t) = Y(x, y, 2)w(t)
Plugging this (*) into the Schrodinger equation and dividing both sides by (*) we arrive at:

B n’ V2‘P(x,y,z)+V i 1 owl(t)
2m ¥(x,y,z) w(t) ot

Since the left hand side varies only with position, and the right hand side varies only with time,
the only way these two sides can equate is if they are equal to a constant ( we will call this
constant, total energy, E). Thus, we can break this equation into two equations:

2 2
(_h Vwa]:E E=int 2
m ¥ w Ot

Consider first the time variable version (right side) then later we will examine the spatially
variable portion. This will give us time variable solutions and, later, a separate spatially variable
solution.
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Schrodenger Equation

Consider the time variable solution:

E=int o

w Ot
ow (Ej
—=—i— |w
Ot h

E
l_

w(t) = eH hjtj or w(r)=e

where E =hw

This equation expresses the periodic time nature of the wave equation.
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Introduction to Quantum Mechanics

Consider the space variable solution:

2 2
[_ L V‘PH/]:E

2m ¥

hZ
(— —Vi+ V}‘P = EY
2m

HY = EY

momentum [ 1] )
“operator” % +V Y =EY

Kinetic _ Total
Energy Energy

Classically, momentum, p=mv and kinetic energy is ¥ (mv?) = 2 (p?)/m
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Introduction to Quantum Mechanics

Consider a specific solution for the free space (no electrostatic potential, V=0) wave solution is
(electron traveling in the +x direction in 1D only):

h2
(——V2+V]\P:E‘P
2m
2 2
2 LerEWP:O
2m_Ox
¥(x)= Ae™ + Be™
2712
Wherekzz—ﬂ: 2sz orE:ﬂ
A h 2m

Since we have to add our time dependent portion (see (*) previous) our total solution is:
—i(wt—kx —i( ot +hx
Y =W (x)w(t) = de @) 4 i)

This 1s a standard wave equation with one wave traveling in the +x direction and one wave traveling in
the —x direction. Since our problem stated that the electron was only traveling in the +x direction, B=0.

Classically, momentum, p=mv and kinetic energy is ¥ (mv?) = % (p*)/m
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Introduction to Quantum Mechanics

An interesting aside: What is the value of A?

Since Y is a probability, - [ ]
¥ 'Wdx|=1

B Ae™ de ™ dx =1

(® 00 2 ]OC—]OC
A e™ ™ dx =1
o0

f; Aldx =1

This requires A to be vanishingly small (unless we restrict our universe to finite size) and is the same
probability for all x and t. More importantly it brings out a quantum phenomena: If we know the
electrons momentum, p or k, we can not know it’s position! This is a restatement of the uncertainty
principle:

Ap AX = h/2

Where Ap is the uncertainty in momentum and Ax is the uncertainty in position

Wave Packet Discussion on Board:
Georgia Tech ECE 6451 - Dr. Alan Doolittle




Introduction to Quantum Mechanics

The solution to this free particle example brings out several important observations about the
dual wave-particle nature of our universe:

¥ = W(x)w(f) = Ade (@)

*While particles act as waves, their charge is carried as a particle. I.e. you can only say that there is a
“probability” of finding an electron in a particular region of space, but if you find it there, it will have
all of it’s charge there, not just a fraction.

*Energy of moving particles follows a square law relationship:

2
272
n’k*  (p)

E = =

Neudeck and Pierret Fig 2.3 2m 2m
E E

- <p> > k
Energy-momentum relationship for a free particle. Energy-momentum relationship for a free particle.

Classically, momentum, p=mv and kinetic energy is (mv?)/2 =(p?)/2m
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Introduction to Quantum Mechanics

What effect does this “E-k” square law relationship

have on electron velocity and mass?

The group velocity (rate of energy delivery) of a wave

1S:

So the “speed” of an electron in

the direction defined by p is found

from the slope of the E-k diagram.
nk?

" om

o[ EY
dK’

So the “effective mass” of an
electron 1s related to the local
inverse curvature of the E-k
diagram

Similarly, since E

Note: Brennan section 8.1 rigorously derives the equation for v, and m”

Georgia Tech

———-l--‘ ————— m*

—; - ol

E-k diagram for a free electron with mass m (solid line} and a
smaller mass, m*. The parabolic £~k diagram leads to a linear v versus k relation

and a constant mass.

Figure after Mayer and Lau Fig 12.2 ECE 6451 - Dr. Alan Doolittle




What effect does an electrostatic potential have on an electron?

Consider the electron moving in an electrostatic potential, V . The wave solution is (electron
traveling in the +x direction in 1D only):

2
(——vz +V]‘P = EY

2m
2 2
2 \f+(E—V0)‘P:O
2m Ox
P(x)= Ae™ + Be™
_ 272
Wherekzz—ﬂ=\/2m(E2 V")OrE:ﬁ—VO
A 2m

Since we have to add our time dependent portion (see (*) previous) our total solution is:
—i(wt—kx —i(ct+hx
¥ = W(x)w(f) = Ade (@) 4 perilerh)

This 1s, again, a standard wave equation with one wave traveling in the +x direction and one wave
traveling in the —x direction. Since our problem stated that the electron was only traveling in the +x

direction, B=0.

When the electron moves through an electrostatic potential, for the same energy as in free space, the

only thing that changes is the “wavelength” of the electron.
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Localized Particles Result in Quantized Energy/Momentum:

Infinite Square Well

First a needed tool: Consider an electron trapped in an energy well with infinite potential barriers.
The reflection coefficient for infinite potential was 1 so the electron can not penetrate the barrier.

——V +V VY =E¥Y o0
2m
2 2
— h— 0 Lf —FE¥Y =0
2m Ox
2
0 \f +k°Y =0
Oox
General Solution : W(x) = Asin(kx)+ B cos(kx)
2712
Wherekzz—ﬂ: 2sz orE:ﬂ
A 2m
Boundary Conditions :

P(0)=0 = B=0

Y@)=0 = Asin(ka):O = k:n—ﬂforn:il,i2,4_r3...
a

2 242
Y (x)=4, sin(@j and E_= nah

2
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(b)

After Neudeck and Pierret Figure 2.4a
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Localized Particles Result in Quantized Energy/Momentum:
Infinite Square Well

What does it mean?

A standing wave results from
the requirement that there be a
node at the barrier edges (i.e.
BC’s: ¥(0)=¥(a)=0). The
wavelength determines the
energy. Many different
possible “states” can be
occupied by the electron, each
with different energies and
wavelengths.

Georgia Tech After Neudeck and Pierret Figure 2.4c.d,e
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Figure 2.4 Particle in an infinitely deep one-dimensional potential well. (a) Spatial
visualization of the particle confinement. (b) The assumed potential energy versus position
dependence. (c) First four allowed energy levels. (d) Wavefunctions and (e) |i4|* associated with
the first four energy levels. [ys” is proportional to the probability of finding the particle at a given
point in the potential well.
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Localized Particles Result in Quantized Energy/Momentum:
Infinite Square Well

What does it mean?
¥ (x)=A, sin(@j
a

Solution for much larger “a”. Note:
offset vertically for clarity.

\ F
@ @
@ ®l & [5)
\e x f
15 + Free
(@) particlu.
i
@ @

@ @
Q@ 10 Q@ /
(@) @
(@)
..
.' 5 ’.
| \ / | —p
-4, =3m, -2m, -m, O 7, 2my, 3wy 4wy
Tﬁ I_Iﬁ —HJ'I 'd_fl 'fl “f.l “fl a ]r.

Figure 2.5 Allowed infinite-well particle energy versus counterpropagating wave momentum
(discrete points) referenced against the free particle E—(p) relationship.

After Neudeck and Pierret Figure 2.5
Georgia Tech

Recall, a free particle has E ~k>.
Instead of being continuous in k?, E
is discrete in n?! I.e. the energy
values (and thus, wavelengths/k) of a
confined electron are quantized (take
on only certain values). Note that as
the dimension of the “energy well”
increases, the spacing between
discrete energy levels (and discrete k
values) reduces. In the infinite
crystal, a continuum same as our free
particle solution i1s obtained.
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What about an electrostatic potential step?

Consider the electron incident on an electrostatic potential barrier, V . The wave solution (1D
only): V(x<0)=0 V(x>0)=V,
*r— V

o

< >
Region | x=0 Region I

We have already solved these in regions I and II. The total solution is:

\P] = \P](x)wl(l‘) — A]e—i(a)t—k,x) + B]e—i(a)Hk,x)

LPH = LIJH()C)M/H(Z‘) — A[Ie_i(a’t_knx) 4+ Bﬂe—i(a)Hka)

where k, = 2z _ |2mE and k, = o7 _ \/2m(E V)

2 T, 72

1 1
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What about an electrostatic potential step?
*— V

o

cont'd... < >
: x=0 :
Region | Region |l

“P] = qjl(x)wl(t) — Ale_i(a)f_kzx) + Ble—i(a)Hk[x)

LPH = \PH()C)WH(t) — Aﬂe—i(a)t—k[[x) n BHe—i(a)Hka)

Whereklzz—ﬂ: 2mk and kH:2_7Z:\/2m(E—VO)

2 h2

1 h 11

When the “wave” is incident on the barrier, some of it is reflected, some of it is
transmitted. However, since there is nothing at x=+« to reflect the wave back, B,=0.

Incident Wave Reflected Wave Transmitted Wave
AL AL A
‘ ( k)\ . '(t+k)\ ‘ '(tk\)
_ —1\t—K;x —1\t+K;Xx _ —1\t—k;x
Energy is conserved across the boundary so,
Incident Wave Reflected Wave Transmitted Wave
A A A
3 nk? " N n*k? h
_ _ I _ _ _ _ 11 _
hwl =L incident =~ =L reflected ~— hwl =L transmitted + Vo =" ZD-H
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What about an electrostatic potential step?
*— V

o

cont'd... < >

Region | x=0 Region |l

We can apply our probability current density concept,

p= ¥ () = ﬁ(qf*‘(r)%\y(r)_ PV () Vet % 0

to define transmission, T, and reflection coefficients, R, such that the transmission
and reflection probability is

T'T =

transmitted reflected

and R'R =

incident incident

Incident

_ h (\P[* d‘PI _ \PI d“P[ j _ h . <(+ ik] )A;eﬂ(a)t—k,x)A[e—i(wt—k,x) . (_ ik[ )A[e—i(wt—k,x)A;‘eﬂ(a)t—k,x))
l

2mi dx dx 2mi
hoy. R
Jlncia’ent = % (lzk} AI AI )
Similarly,
ransmitted = i (lzkll AII A;I ) and JReﬂected == i (lzkIBIB;)
: 2mi 2mi
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What about an electrostatic potential step?

VO
cont’d... p .
: x=0 :
Region | Region |l
Thus, J
T* T = transmitted an d R* R = reflected
Jincident Jincident

ky (A,,AE,) NP (BIBZ) _ (B,BZ)
k[ (AI AI ) (AI AI )

*

T =

k,(4,4;)]
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What about an electrostatic potential step?
*— V

(0]

Consider a different approach... p >
: x=0 : X
Region | Region |l

LPI = qjl(x)wl(t) — Ale_i(wt_k[x) + Ble—i(a)Hk[x)
LPH — \PH(X)W]](t) — Aﬂe—i(a)t—kgx) + BHe—i(a)Hka)

where k, = 27 _ 2n12E and k, = 27 _ \/2m(E2— v,)
1 h 17 h

When the “wave” is incident on the barrier, some of it is reflected, some of it is
transmitted. However, since there is nothing at x=+« to reflect the wave back, B,=0.

If we use the simpler boundary condition, y is a wave, both @ and it’s first derivative
must be continuous across the boundary at x=0 for all time, t. Thus,

Y, (x=0)="%,(x=0) A4, +B, =4,

and ‘ and
o, (x=0) = 0¥, (x=0) k, (AI - B, ) =ik, 4,

I

Ox Oox

ECE 6451 - Dr. Alan Doolittle
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What about an electrostatic potential step?
*— V

o

contd... < >

Region | x=0 Region |l
A, +B, =4,

and
ik[ (AI - B, ) = ikHAH
ik] (AI _ B[) ik[[ (AI + B[ )

: B . B
ik, | 1—-—L | =ik, | 1+—+
AI AI
B, (ik, —ik,
A4, ik, + ik,
We can define a “reflection coefficient” as the amplitude of the reflected wave relative
to the incident wave,

2

BI — kl B kl[
AI k] + k]]

2
i k] - kH

k, +k,

R = and R'R =

AI
Same as previous case.
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What about an electrostatic potential step?

*— V
cont’d... 0

< >
, X= ,
Region | 0 Region |l
And likewise, we can define a transmission coefficient as the amplitude of the transmitted wave
relative to the incident wave, T=A,/A,

A +B=Ay
and
ik, (AI - B, ) =1k Ay
ikI(AI - (AII — A )) =1k Ay
ik, (2A,) =ik, A, +ik, A,

2 2
TR STV N N
Ar o ki +ky A, k, +ky
2z _ [2mE 27 _ 2m(E-V)
- /1[ 2 an 11 /1_”_ %)

Georgia Tech
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What about an electrostatic potential step?

¢ ‘ Vv

cont’d... 0

Region | x=0 Region |l

Final details:

T'T :7—”’1(/1”/{{’) and R'R= B’Bi
k[ IAI AIAI
Since —L = 2k, and T'T= ‘kH *2k1 . )( 2k, J
I kI + kII ‘ kI kI + kII kI + kII
2
T'T= 411({“ ! 5 R'R = k, —ky
! 1+ =1L kI + kn
|
TT+RR=1
K = 2z 2sz and k, 27 _ Zm(Ez— V)
A A, h
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What about an electrostatic potential step?

cont’d...

Consider 2 cases: Case 1: E>V

Both k; and ky; are real and thus, the particle travels as a wave of different wavelength in the two

regions.

However, R*R is finite. Thus, even thought the electron has an energy, E, greater than V it will have a
finite probability of being reflected by the potential barrier.

If E>>V, this probability of reflection reduces to ~0 (k; = k)

S
N
|4k 1
T'T = kIH -
1+-1
kl

Georgia Tech

|ﬂ’1| I/llll

*—

Vv

Region | x=0

Region |l
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What about an electrostatic potential step?

cont’d...
Case 2: E<V

k; is real but k;; is imaginary. When an imaginary k;; is placed inside our exponential, e, a decaying
function of the form, e(®9 results in region II.

Transmitted Wave Ay can be complex

A
' N\

_ —i(ot—kyx) _ —(‘k,,‘x) —iot
Y, =4,e = 4,e e

However, T*T 1s now finite but evanescent. Evanescent waves carry no current (see homework). So
even though the electron has an energy, E, less than V it will have a finite probability of being found
within the potential barrier. The probability of finding the electron deep inside the potential barrier is ~0
due to the rapid decay of W.

R*RE‘BI ‘2:‘k1_i‘kll“2=2_*:1 \M
A [k k| 2

*

TT=0

DuetoJ =0 < >

Transmitted ~

Region I x=0 Region II

2z [2mE 2 2m(E -
k=2 = mz and k, =% = M
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What about an electrostatic potential step?

Consider the following potential profile with an electron of energy E<V .

A A, A
1, o S

>

[l
\ \MWM

x=0 x=a X

Region | . Region III
Region 11

The electron has a finite probability to “tunnel” through the barrier and will do so if the barrier is thin
enough. Once through, it will continue traveling on it’s way.
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What about an electrostatic potential step?

Consider the following potential profile
with an electron of energy E<V,.

Incident Wave ReﬂectedAWave from x=-a

A

N\
i(cot+hyx )

¥ = e @) 4 Be

+x Wave Rjetgion IT Reflected Wave from x=+a

A

r . N7 .
qj]] _ Ce—z(a)t—kzx) + De—z(a)t+k2x)

N\

Transmitted Wave
A

)
_ —i\ot— 1%

Energy is conserved across the boundary so,

272 272
Rk _ 2k
2m 2m
kl:_ﬂ_ 2n12E and k2_27z 2m(E2—V)
A h , h

Georgia Tech

=E-V

ﬂ“ /I 111

4 4 >

“ NWWM/W\/V\/\

{W\/\/\ ali

x=0 x=a X
Region I Region III
Region II
2712
Rk _
2m
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What about an electrostatic potential step?

Region I vV Region I1 Region 11
As was found before for the currents, Ae (@) - ,
o —> Ce—i(wt—kzx)> Fe itk ,
Be—i(a)l‘+k1x) —i(a)t+k2x)
1 — .
x=0 X=a X
I, = 2i (‘Pﬂ d;ﬂ; g d},] _ 2h (( 4 ik )" ) g i) (e )4 itk A*e+i(a)t—k1x))
mi x X mi
h .
J., =—\i2k AA
1 dmi ( : )
Similarly,
J, =—" (i2%,88") and J,, = (2k,cC") and J , =-—"—(2,DD") and J.,, =" (i2k FF")
2mi 2mi 2mi 2mi

Current continuity at the boundaries x =+ a implies,

J,+J ,=J.,+J , and J ,+J ,=J.,

k,AA" +(~k,BB" )= k,CC" +(-k,DD") and k,CC" +(~k,DD")= k,FF"

Solving for k,CC™ + (— k,DD" )from the first equation and substituting into the second,
k,AA" —k,BB" = k,FF" or rearranging and dividing through by k, 44"

BB" FF’
l=——-+—- but,
AA°  AA
0 0 i .
1=RR +TT" s T'T=l— R'R ==
A A
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What about an electrostatic potential step?

Ae—i(a)t—klx) VO
o —> Ce—i(a)t—kzx)> Feil@kx)
< Be—i(a)t+k1x) De—i(a)t+k2x)
< -
x=0 X=a
Region | Region III
Region II

*k

TT=2 R'R=27

Homework!

Hint: Use a combination of the continuity of the wave function and continuity of
the probability density current (or equivalently in this case, the continuity of the
derivative).
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UE":' Multiple/Periodic Potential Barriers:

Kronig-Penney Model
Uﬂ T ' I | 1 J 1 \F 1
[} B I —

Resonant reflectance/transmission creates “standing waves” in the crystal. Only certain
wavelengths (energies) can pass through the 1D crystal.

By analogy, a multiple layer optical coating has similar reflection/transmission
characteristics. The result is the same, only certain wavelengths (energies) are transmitted
through the optical stack. In a since, we have an “optical bandgap™.

1]
/

= 80~
I
Q
2 604
[
\ £
7 40+
AN
\\\ = 20
\\\ 0 -
~ 200 400 600 800 1000 1200 1400

/
/
/

Wavelength (nm)
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Now consider an periodic potential in 1D
- Kronig-Penney Model: Bloch Functions Explained

.) Oﬁ\ o

¥

OJ

\,

Since each unit cell is indistinguishable from the next, the probability of finding an
electron in one unit cell is identical to that of finding it in an adjacent unit cell.

The Bloch theorem states that since the potential repeats every “a” lengths, the
magnitude of the wavefunction (but not necessarily the phase) must also repeat every
“a” lengths. This is true because the probability of finding an electron at a given point

in the crystal must be the same as found in the same location in any other unit cell.
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Now consider an periodic potential in 1D
Kronig-Penney Model: Bloch Functions Explained

To achieve this property, the MAGNITUDE of the wavefunction (but not necessarily the wavefunction) must have
the same periodicity as the lattice. Thus, we choose a wavefunction that is modulated by the periodicity of the
lattice.

Since V(r + a) = V(1)

we choose plane waves modulated by a periodic function,

_ _ikr . The wavefunction in one unit cell is
LP(I’) =C Uy (I’) where Ui (I‘) = Uk (I’ T a) merely a phase shifted version of the

Thus, wavefunction in an adjacent unit cell.

Y(r+a)=u,(r+ a)e K+

P(r+a)=e™ [unk (r)e™ ] = ¢ ¥(r) or merely a phase shifted version of W¥(r)
Thus,
P (r+a)¥(r+a)=e™ ¥ (1P =¥ (1)¥ ()

Thus, the probability of finding an electron in one unit cell is identical to that of finding it in

an adjacent unit cell — as expected.
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An Important Aside: Effect of Bloch Functions

Assuming a large number of unit cells in a material, N, the boundary condition for the system is Na
translations must result in the wavefunction being translated to return to itself? (The probability at the
material edges must be symmetric and equal).

¥(x + Na) = e"™¥(x) = ¥(x)
Thus,
e"™ = 1 so taking the Nth root,

oika _ 1(%\;) (ein27r )(%v) e(inz’%v)

ka = (n2%,)

So the allowed states of k are :

2T n
Na

k =

Thus, if N (the number of unit cells available) is very large, like in a semiconductor, the spacing between the
allowed k-values (kn=2-kn=1 etc... are almost continuous, justifying the treatment of the k-states as a

continuum.
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Now consider an periodic potential in 1D
Kronig-Penney Model

[~
© 98 & 6 &
Consider what potentials an electron would see as it moves 0 Atomic core (+2'g)
through the lattice (limited to 1D for now). The electrostatic U
potential, V(x) is periodic such that V(x+L)=V(x). x

(b)

Ulx)

We MUST have standing waves in the crystal that have a
period equal to a multiple of the period of the crystal’s
electrostatic potential. (Similar to a multilayer antireflection
coating in optics)

It is important to note that since, the wavefunction repeats
each unit cell, we only have to consider what happens in one ()
unit cell to describe the entire crystal. Thus, we can restrict x
ourselves to values of k such that —r/a to +n/a (implying ka
<1 or (2n/L )a<1)

AVAYAVERVA

(a) One-dimensional crystalline lattice. (b—d) Potential energy of an electron inside
the lattice considering (b) only the atomic core at x = 0, (c) the atomic cores at both x = 0 and
x = a, and (d) the entire lattice chain.

(d)

Georgia Tech After Neudeck and Peirret Fig 3.1 ECE 6451 - Dr. Alan Doolittle




Now consider a periodic potential in 1D
Kronig-Penney Model

Assumptions of Kronig-Penney Model:

*Simplifying the potential to that shown )
here:

1D oy AAAATATATATAS

*Assume electron is a simple plane wave of

the form, Ut
kx
C
b'n

...l“()dlﬂated by a [LIllCti()ll Witll the | | I I | | I l | I I I l I
07
:b f‘li :.rt m

same periodicity as the periodic
crystalline potential, U(x) -

(b)

*The crystalhne potentlal 1S pGI‘IOdlC, Figure 3.2  Kronig-Penney idealization of the potential energy associated with a one-

U(X):U(X +L) dimensional crystalline lattice. (a) One-dimensional periodic potential. (b) Kronig-Penney
model.

*Thus the wave function is a simple plain
wave modulated by a function with the
same periodicity as the periodic crystalline
potential:

The question “how does the presence of a periodic
potential effect the free electron” can thus be
converted to the question “what effect on the
electron does the changing of an electron’s free state

L]:J(X) — unk (X)eikx (plane wave) to a Bloch state”?
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Kronig-Penney Model

For 0<x<a:

Y (x) = 4sin(ax) + Bcos(ax)

Georgia Tech

For -b<x<0:
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Y, (x) = Csin(fx) + D cos(fx)

ECE 6451 - Dr. Alan Doolittle




Kronig-Penney Model

For 0<x<a:

For -b<x<0:

Y (x) = Asin(ax) + Bcos(ax)

W, (x) = Csin(fx) + D cos(fx)

Applying the following boundary conditions:

¥,(x=0)=¥,(x=0)

d¥, (x) _ d¥,(x)
dx  dx

x=0

x=0

—

N

¥ (x=a)=e""""¥, (x = -b)
d¥,(x) _ pik(ath) d¥, (x)

BC for continuous

> wave function at the

boundary

BC for periodic wave
> function at the
boundary

x==b

X=a

dx - dx

—
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Kronig-Penney Model

Applying the boundary conditions, we get:
B=D
oA = pC
Asin(aa) + B cos(aa) = & “*?|— Csin(fb) + D cos(Sb)]
aAdcos(aa) + aBsin(aa) = ™[ BC cos(Lb) + D sin(4b)]

Eliminating the variables C and D using the above equations, we get:

A{sin(aa) + (%je”‘ (@+P) sin( ,Bb)} + B[cos(aa) — "™ cos( ,Bb)] =0

Alorcos(aa) — e cos(Bb) |+ B|- arsin(aa) — fe’ ) sin(Bb)|= 0

This equation set forms a matrix of the form:
w x| A4 0
y z||B 0

A and B are only non-zero (non-trivial solution) when the determinate of the above
set is equal to zero.
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Kronig-Penney Model

Taking the determinate and simplifying we get:

— (%j sin(aa ) sin( Bb) + cos(aa) cos(fb) = cos(k(a + b))
a

Plugging in the definitions for o and 3 we get:

The right

sin(awfm#\/zjsin[b‘ﬂmgj” /(i—ln+cos[a1/2m#\/zlco{b1/2m§]" /(i—lj]cos(k(a+b)) forE> U,
h U, h U, h U, h U,
sm[a1/2n;15] \/7 [ 1/2mU / 1—— J+cos£a1/2 mU, \/7 oh[ 1/2mU / 1—— ]cos k(a+b) f0r0<E<U

hand side is constrained to a range of +/- 1 and is a function of k only. The limits of

the right hand side (+/- 1) occurs at k=0 and +/- n/(a+b) where a+b is the period of the crystal

potential.

The left hand side is NOT constrained to +/- 1 and is a function of energy only.
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Kronig-Penney Model

The right hand side is constrained to a range of +/- 1 and is a function of k only. The limits of
the right hand side (+/- 1) occurs at k=0 to +/- n/(a+b).

The left hand side is NOT constrained to +/- 1 and is a function of energy only.

0 Within these “forbidden energy
ranges”, no solution can exist (i.e.
electrons can not propagate.

Various “Bands or allowed energy” exist
where the energy E is a function of the
choice of k (see solution equation)

Left or Right hand side of Kronig-Penney Solution
[ =)

Graphical determination of allowed electron energies. The left-hand side of the
Eqgs. (3.18) Kronig-Penney model solution is plotted as a function of ¢ = E/U,. The shaded
regions where —1 = f(¢) = 1 identify the allowed energy states for the specific case where,

2mU., 2mU,
a e =b e =7
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Kronig-Penney Model

Replotting the previous result in another form recognizing the lower k limit is shared by + and —
7/(a+b) while the upper limit is for k=0.

There are at most 2 k-values for each allowed energy, E

The slope, dE/dK is zero at the k-zone boundaries at k=0, k= — n/(a+b) and k= + n/(a+b) Thus we
see that the velocity of the electrons approaches zero at the zone boundaries. This means that the
electron trajectory/momentum are confined to stav within the allowable k-zones.

Band 4

Band 3

AN YOS

Band 2

Graphical determination of allowed electron energies. The left-hand side of the |
Eqgs. (3.18) Kronig-Penney model solution is plotted as a function of £ = E/U,. The shaded T 0 ™
regions where —1 < f(§) = 1 identify the allowed energy states (apa = agb = 7). a+b a+b

Figure 3.5 Reduced-zone representation of allowed E-k states in a one-dimensional crystal

Note: k-value solutions differing by 2nt/(a+b) are indistinguishable
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Kronig-Penney Model

Replotting the previous result in another form ...

Band 4

Band 3 The presence of the

periodic potential
breaks the “free space
solution” up into
“bands” of
allowed/disallowed
energies. The
boundaries of these

bands occurs at
—3n/(a+b) —2n/(a+tb) —m/(ath) O n/(atb) 2m/(atb) 3m/(atdb)  k=tm/(a+b)

Free Space E-k
diagram

AT A At

+—r < >« > 4—r —>
3rd 2nd lst Brillion 2nd 3rd
Brillion Brillion Zone Brillion Brillion
Zone Zone Zone Zone

Note: k-value solutions differing by 2nt/(a+b) are indistinguishable. Also
due to animations printed version does not reflect same information.
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Now consider an periodic potential in 1D
Kronig-Penney Model

TN
\ o E,

[NV

Visualization of a conduction band electron moving in a crystal.

After Neudeck and Peirret Fig 4.1
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What is the Importance of k-
Space Boundaries at k=@/-)m/a?

Crystal Structures, Brillouin
Zones and Bragg Retflection

ECE 6451 - Dr. Alan Doolittle




Concept of a Reciprocal Space

(Related to the Fourier Transform)

to

Real
Space

|7 |7

Reciprocal
Space
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Importance of k-Space Boundaries at k=¢/-)m/a
Crystal Structures, Brillouin Zones and Bragg Reflection

2

The crystal reciprocal ];1 5 G- ‘% G

lattice consists of a
periodic array of G
“inverse-atoms”( mor&..J
explanation to come

later). \

= Bragg Reflection Condition for total internal reflection

Surface made from
all such planes is
the 1% Brillouin
Zone. The
Brillouin zone
consists of just
those k vectors for
which Bragg
Reflection occurs.

Since |G|=2m/a
then | \2Gl=n/a
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Importance of k-Space Boundaries at k=¢/-)m/a
Crystal Structures, Brillouin Zones and Bragg Reflection

imx inx imx imx

Y(x) _~e® +e *“ore® —e °
for k=—

Thus,

Y(x) o5 COS(E] or sin(gj
ork="— a a

Thus,

Electrons are represented by “standing
waves” of wavefunctions\localized
near the atom cores (i.e. valgnce
electrons) and as far away fronwthe
cores as possible (i.e. free electrons).
Given the different potential energies
in both of these regions, the energies
of the electrons away from the atom
cores is higher. This is one
explanation for the origin of the
energy bandgap.

Real Space Crystal
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