Lecture 9

Non-degenerate & Degenerate Time Independent and
Time Dependent Perturbation Theory:

Georgia Tech

Reading:

Notes and Brennan Chapter 4.1 & 4.2
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Non-degenerate Time Independent Perturbation Theory

If the solution to an unperturbed system is known, including Eigenstates, ¥ () and Eigen
energies, E_©), ...

(0) _ (0)\gs(0)
HOLPn _En LPn

...then we seek to find the approximate solution for the same system under a slight perturbation
(most commonly manifest as a change in the potential of the system).

HY =FE Y
To do this , we expand the Hamiltonian into modified form,

H=H,+gH,
Where g is a dimensionless parameter meant to keep track of the degree of “smallness™ (we will
eventually set g=1, but for now, we keep it)

(H,+gH, ¥, =E,Y,

where H’ 1s the perturbation term in the Hamiltonian. As g—0, then H—-H_, ¥,—»Y,© and

E,—E,©
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Non-degenerate Time Independent Perturbation Theory

If the perturbation 1s small enough, it is reasonable to write the wavefunction as,

¥ =9 4oV 4 PP 4

... and the energy as,
.l (1) 2 17(2)
E =FE"7+gk  +g°£" +..
Thus, we can write the Schrodinger equation as,

HY =FEY,
(1, + gH )(‘Pn(o) + g+ g +---)= (E,EO) +gE\"V + g?E® +---)(‘Pn(°) +gP 4+ g +)

or,

HY —-EY =0
v g" (1,00 — EOw ) )

1 (1) (0) O (1) (D (0)
+g (Ho‘lln + lePn -EY, -EY, ) For any choice of
+ gz(Ho\Pn(z) +H V" -EOY® - EVP — E}Ez)‘Pn(O)) >_ g, each term in

3 parenthesis must
+g° () be equal to 0!
+g* ()
_|_ cee — O -/
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Non-degenerate Time Independent Perturbation Theory

Gven, g _py —g )

n gg(H PO _ E(O)LIJ(O))

( o o o Tl For any choige of
¥+ H O - Ol _[EOlp©) | & cachemin
( v 4 g [ _ polg] Jpago _E(Z)\_P(O)) parenthesis must
" Hr "L 21 = — be equal to 0!
+g° ()
+g'() —

+...:

1st order perturbation theory seeks values of E_(!) and |V (|

2nd order perturbation theory will seek values of|E_®)|and|'¥ )|

V'S V'S
E Y,

$2E, o2y @
gk, Y, M
E © 0
| |

! > —+ >

g=1 g g=1 g
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15t Order Perturbation Theory

Given the term that 1s 15t order in g,

(1 (0) (O (1) (D (0) ) _
g(HWO + H WO - EOWO - EOw© )= 0

and using the Fundamental Expansion Postulate for ¥, (), using the basis vectors, ¥, ‘s

Y =>a
J

(1) 0) _ (O (D (0)
HYD +H P = EO9D + EDY!

D A Do s
J J

But since,

0) _ (0)
HO\Pn - EO\Pn
then,

Sty e =50 Sa | pre
J J
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15t Order Perturbation Theory

Cont’d,

(zangT;M] L H WO = EO [z aj‘P](.O)j +EOPO
J J

As we have done many times, we will multiply by W'*" and integrate over all space

| (Z a ].E;?LP;”*LP;O)]dv + (WO H W Odv = [ E (Z a ¥ jdv + [ Ew v
J j

Using the fact that ¥|” is orthogonal to ¥'{” unless m = j,

a, B+ [P H W dv = E"a, + E [ ¥ dv  or

a,Ey+ (P |H,| W) = E"a, + E" (W)

Consider the case when m=n, 4B +<\P(0) ‘H ‘\P(O)> _ g, +E(1)<T(O) ‘\P(O)>
m m m p n n m n m n

U
a,EL+ (YO |H W) = EPa, + ED (PO [¢0)

vOlH PO
R
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15t Order Perturbation Theory

To find the coefficient, a_’s consider the case where m#n,

amE;Z +<\Pn(10) ‘Hp‘\{,nm)> _ Er(z())am +E}§1)<\Pn(10) “P,EO)>
(0| 0) = (£ - £, +0

<\Pn(10) ‘Hp‘ LP’EO)>
m = (E,EO) _EI;O))

a which is valid for all m, n except m =n
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15t Order Perturbation Theory

For the case m=n, we have to consider, the normalization condition,
<‘P(°) +g‘P(1) V) +g‘P(1)> _1
U

*

I(‘P}fo) + gz am‘PnEO)] (\P,fo) + gz a, P jdv =1

But since all cross terms of the form, j YO Ogy or j YO Ody equal 5,

l+ga, +ga, +gzzama; =1

* %k

which is only true for all g whena _=a_ =a,=a,6 =0
Thus, the original equation,

¥ = \P(O) + g\P(l)

¥, =¥ g Y0, W

becomes,
YOIH P
¥, =P," + g,;< (E(o‘) _p}L<0))> n

NOTE: sincea_ =0 for m = n, the sum is only performed over m # n
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In summary,

Georgia Tech

15t Order Perturbation Theory

” W;lere, ”
o (0 H, )
£, = <\Pn(0) \P,EO)>

” w;zere, ”
YOLH P
v, = mZ< (E(o‘) _pl‘;m)) >‘P,f¢°)
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15t Order Perturbation Theory

Things to consider:

1.

To calculate the perturbed nt state wavefunction,
all other unperturbed wavefunctions must be
known.

Since the denominator is the difference in the
energy of the unperturbed n energy and all other
unperturbed energies, only those energies close to
the unperturbed n'h energy significantly contribute
to the 15t order correction to the wavefunction.

(Y P

g” can be set equal to 1 for convenience or
rigidly determined by the normalization condition
on WV .

Georgia Tech
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2"d Order Perturbation Theory

Given the term that is 2" order in g,
+ 22 (HP? + H WO - EOW —EDYO - EOwO) -

and using the Fundamental Expansion Postulate for V', @), using the basis vectors, ¥,© ‘s,
P =>b
- J J

(2) (6] O\ (2) (Mg (D) g (0) _
HWY? + H YO - EO9@ — EOgO _ EOw© =

(0) 0) | = () (0) (1) (0) Chg ()
H{ij‘l’j ]+Hp[2aj\11j ]_En (ij\{fj j+En (Zaj‘ljj j+En ¥
J J J J

Again, multiplying by W' and integrating over all space,

| \P,;O)*HO(Z bj‘Pj(.O)]dv +| LP,;O)*H{Z a j\P](.O)Jdv =
J J
o Eio)(z bj‘P,ff)*‘P](.o)]dv o E,gw(zajw,gm*w;mjdv [ EOwO Oy
J J

But since,
HY” =E ¥ and JA‘P};O)*‘PJ(.O)dV =35,
then,

b EC +Ya, [ WO H W Odv = b EO +a,E + EPS,,
J
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Cont’d,

2"d Order Perturbation Theory

m

bES +Y a,[ ¥ H ¥ dv=b,E" +a,E" +E”S,, or
J

bEY +> a (¥ |H, W) =b,E" +a,E" +ES,,
J

To find the 2" order energy correction, consider the case of m=n,

Georgia Tech

EP =Y a(v"|H,[¥")-a,E"
J

or pulling out of the summation the m = n term,

EP =% a ¥V |H,[¥O)+a,(¥O |H,[¥O)-a,E"
J#n

Inserting the result for £{" from the Ist order solution,

E = Y a (O [#0) 4 a, (%0, 00) —a, (20 |1 |90

Jj#n

(2) _ (0) (0)
EP =Y a (v |H, )
jn
Inserting the result for a; from the 1st order solution,

YOH P
E,Sz) = Z < (E(o‘) _pE(o)) >j<ly,§10) Hp‘\P/('O)>

(SEMGARIRY

2
E,EZ) = Z (E(O) _E(O)) }
n J
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2"d Order Perturbation Theory

To find the coefficient, b_’s consider the case where m#n,
Jj#n

1 E)= T 0 |, 2
J#n

b, = Z[“1<‘P510) H p“Pf'O)>] . amf?,i”
Jj#n n

(£~ £D)

a j<tP,;°> \Hp \ ‘PJ(.O)>

b = —
; (E,EO) —E,qu)) j (E,EO) _E(O))

(£, - E") E" ~E)

[<\P}(o> ‘Hp‘xp;0>>j<\y(o) ‘H ‘\P(0>> [<\y,;o> ‘Hp‘\Pn<0>>j(<qllgo> ‘Hp‘\plgmq
p J 1

S@‘
I
i

(E" -E) } (£ -E)

s@
[
M

£, - EPNE - E,))

Georgia Tech

([ o, 20 )) (s, o o |, [ )
(B9 -EO)ED -ED)
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2"d Order Perturbation Theory

We also need to find the value of b for the case where m=n. To do this, we again
examine the normalization condition,

(P + g + g ) =1

U
j[‘I’(O) +g2a \{1(0) +g Zb \P(O)] (‘P(o) +gza ‘I’(O) +g Zb \{,(O)J

But since all cross terms of the form, j YOO dy or j ¥ Odv equal 6,

\P(O)H \P(O)
p -l -l P
J

= ( (0) _Eﬁ'o))

Adding this to the result for b_ with m # n and inserting this into the expression for ¥*,

p = [Z[(<‘P,(0) ‘Hp‘ ‘P,50>>X\PI;0> Hp\{f/(O)>] ) (<‘P,f1°) ‘Hp‘ \P;1(0)>X<‘P,§O) ‘Hp‘ \P,fo)>)] ) lz KLP]@ ‘Hp

o)

25 (B9 -EOY

= EO-ENNES -E) (£ -EPNES ~E)
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2"d Order Perturbation Theory

Cont’d:
(s o, e el ) ) (e o, s oo o, | )| 1 s o )
S (e i) rioE) N R IRV GLBEC) R D O T

Thus, the original equation,
¥ =¥+ g+ g? P
W, =W 4 g0, W + g’ bW

becomes,

WO H |
¥ =9+ g2¢1< (E(o‘) _plL(O)) >

...gzzﬂZ(«w et (el ol H’?Wﬂw

(E;EO) —E;O) XE}EO) _E,io)) B (E;EO) _EY XEISO) _ E;O)) 24 (E,Eo) _EWO )2

PO 4

Jj#n
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In Summary:

2"d Order Perturbation Theory

2

(ST EARA S

w0l | )
< p > JZ’;{ (E;EO) _EJ('O))
v H, )
CEEO R

H,|¥")

|

(ol [ M o, )
- EV-EYNEY -EY)

CRR CRE)

—%Z

o )
G

m

2
}LP(O)

Jj#n
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Perturbation Theory

Consider an important and illustrative example: Small electric field applied to an infinite
potential barrier quantum well. What effect does this have on the ground state energy?

V'S A V'S

\P(O)n= , ¥

n=1

EO _ & EO,_

------- E_

n=1
-Ya 0 +%a \
Unperturbed Well -gzear turbgd \j{llézﬁl

When the electric field is applied, the energy bands bend, resulting a redistribution of the
electron in the well toward the right side. Since the energy on this side of the well 1s
lower, the new energy of the ground state is expected to be smaller than the unperturbed
ground state.

We previously solved this as an asymmetric solution (0<x<L) and had states that only
depended on sin functions. For reasons that will become obvious, we redefine our limits
as symmetric (- 72 a <x< + %2 a) which will require wave function solutions of the form:

Py = \/Z sin(mﬂxj formeven and ¥!” = \/z cos(mnx) for m odd
a a a a
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Perturbation Theory

We first attempt a 15t order perturbation solution of the form:

E =E° +gE" where, E!" = < .

V'S V'S

V'S
V'
yo b
EO & EO, s
1 n=1 e aanns E

ha 0 +la i
-oa 0 +ra
Unperturbed Well Perturbed Well

Note that since our ground state wave function solution is normalized, the denominator
in the above equation is equal to 1.

In thlS CaSG, the pel’turbatlon HamlltOIllan, sz 'qg OX (Electric field=Volts/meter times meters = Volts > Energy by —q).
Thus, for the ground state, n=1 (odd index).

B = (0 | ) = 2 (00 Cae it v =2 2 (-qe,%) cosZ(—(” :al)’“j "
2 2
E ,51:)1 =0 (integrand is an odd function)
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Perturbation Theory

Since our 15t order perturbation correction to the ground state energy resulted in a zero
correction factor that deviated from our physical understanding of the system (i.e. we
expect a lower ground state energy), we now must consider the 2" order correction.

w0 |
E - E,EO) +g<‘1”,§0) ‘Hp“P,§O)>+g2J§ ‘< (E}E(‘)) —[)Eﬁé))>

V'S V'S V'
V'S
yo _ b
EO A.. EO® _
n=1 —lzaﬁ E,_,
a0 +a T
a0 +ra
Unperturbed Well Perturbed Well

Note that since our 15t order correction was equal to 0, the middle term in the above
equation is equal to 0.

We will examine odd and even indexes in the summation separately.
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Perturbation Theory

Consider the Odd indexes in the summation:

O g g O
£ K (El,zli - ‘Eﬁé’ )> }

E} = Z (E(O) —E(O))

J#n

Georgia Tech
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Perturbation Theory

Consider the Even indexes in the summation:

2

YO I|H [P
e
(90 ge,x) )
E,Ez) _ ; (Elg —E;O) )J

Consider for jeven,

($O(~ ge,x) ¥ ) = jj () (- ge,x ¥ Jax
et ool 50 anef (2
et = [ {5 o

So the Even indexes in the summation contribute non-zero values!

Georgia Tech

»j i

(j+1)7r
2

)
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Perturbation Theory
Thus, the correction term for Even indexes is:

2

YO g [P
E}gz) :j;w ‘< (Ellgl)l j‘E§é>)>

| e e (e )

2ma’ 2ma’

Technically, this is an infinite summation. However, since the denominator increases
proportionally to j?, the relative weight of higher order j terms rapidly decreases and the
solution converges after just a few terms.

Note: Since the denominator 1s always negative and the numerator is always positive,
the 2"d order correction is always negative resulting in a lower energy than the
unperturbed ground state as expected. I.e.,

E, = B9+ g(WO | |wO) 4 82

J#n

2

R
(50~ £0)

E _, =E" + g(0)+ g*(Negative Number)
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Degenerate Perturbation Theory

Thus far, it was assumed that the energy values of each state are never the same. If this
is not the case, the correction terms can “blow up” to infinity.

2
E,=E" +g(YO|H [¥")+ gy ‘<T§Omm>

( 0) _ p(0
n

Jj#n

j#
J*n j

(\P@)H YN YO | [ p© YO \H ‘P<°>>I§T<O>H po | < (PONH PO 2
g’ ) [Z[< JE(O)—E(.O)XE(O)—E(O) ] > _(< w» ——ZK ’ >‘ S
n Tk m n ~En Nk,

n 2 Jj#n E(O) — E(»O) )2 "
How do we handle the case where the energy of multiple states 1s degenerate.

P O

0)
Y, >‘ E,(O=F,(O=E,0=E,©)

P, 0)
P,
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Degenerate Perturbation Theory

The solution to this problem is to transform the degenerate basis vectors into another set
which results in zero numerator terms.

(0) (0)
E =EY +g<‘{1}§0) ‘Hp‘\P,EO)>+gzz @

Jj#n (Er(zo) - EJ('O))

j:tn

E(O) E(O)XE(O) E(O) E(O) E(o)

Simple Example: Changing to an equivalent basis set in real space. A convenient set of
equivalent basis vectors can be selected for any given problem.

3,0
T \P3(O)a tpz(O)oc
P 0
4 4
¥, 0 P, 0
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Degenerate Perturbation Theory

Lets assume that “h” various unperturbed states result in the same (degenerate) energies.
Any specific one of these states, say the mth state can be written as:

‘Pﬂz where m can be any valuem =1,2,3,...,h

n still represents the state of the electron while m represents which of the h degenerate
states are being considered.

Since each of the above unperturbed states is an Eigenfunction of H , with h degenerate
Eigen energies, E_(9, any linear combination of these degenerate basis states is also an
Eigenfunction of H (scBrennan chaper 1). Thus, we can construct a new set of basis sets,
labeled a., that are linear combinations of the degenerate Eigenstates.

n,m

h
PO => pep!)  wherem=1,2,3,...h
m=1

The task 1s simply to find the appropriate values of the coefficients, b_*. To do this, we
simply find the set of b_*’s that force the numerator,

v \H
¥, = §< (E(O) —b‘“(o)) >\P,§10)

) = ’; (E(O) —E(O)) T,

to equal zero when the denominator 1s also zero, thus removing the singularity.
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Degenerate Perturbation Theory

The problem reduces to a diagonalization of the sub-matrix of index h by defining new

basis sets such that,

11

_7_11 1
H

HY=|H,
\.

nl

Georgia Tech

Hll
Hll

N\ ... ... TNy © Y]
th Hl" lIInzl,mzl
\_P(O)
n=2,m=2 _
: ¥v=2cY,

. : F
. 0)

Hhh} : \Pn:h,m:hJ

: : (0)
: IIIn:thl
Hnn _

) alre
0 Hl(h+1) H1

n

3 : ©
H 0y : S s g

Hnl Hnn_ \Pr50)
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Time Dependent Perturbation Theory

In all previous cases, nothing observable happens because the states are assumed static —
unchanging. Most useful systems require transitions between states. For example,
optical absorption and electron-hole pair recombination require a change from one state
to another. This inherently requires TIME DEPENDENT Perturbation Theory.

A A A
V'S
\P(O)n=1 lIJn=1
E“’)n=1A S e
n=1
a0 +Y%a T
-Ysa 0 +%a -Yha 0 +%a
Time t<0 Time t=0 Time t>>0

Given wave functions are sluggish in nature (waves do not change instantly when the
perturbation changes — consider a water wave as an analogy), an instantaneous change in
the perturbation results is a “more” gradual time change in the wave function and thus
the distribution of particles. Note, the expectation value of the total potential energy is
assumed to change instantly as the perturbation energy changes instantly but the
expectation value of the kinetic energy changes “gradually”.

Note: terms like “gradually” and “sluggish” are somewhat misleading in that these changes can often happen in fractions of a nanosecond. However, compared
to the instantaneous perturbation these changes are considered “slower”.
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Time Dependent Perturbation Theory

The starting point for time dependent perturbation theory is the time dependent
Schrodinger equation (see lecture 6). ( Etj
n

o(x,y,z,t)="Y(x, y,z)e_l

or
Breaking this into a time independent, H , part and a SMALL time dependent part, H' (t),
, h o
(H, +eH () =—~—¢
1 Ot

Considering the solution before H' (t) begins,

n

{ Eff’)tJ
Since ¢ =¥Ve ,
H = E©Og®

Thus, the general solution for the time dependent solution before the perturbation is :

¢” => a, (g subject to the normalization condition,

n

<¢(0) ‘¢(O)> which given orthonormality of the individual eigenfunctions, #”, reduces to Z (an ) (an ) =1
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Time Dependent Perturbation Theory

For the time dependent solution,

Vg O
(H, +gH'(t)¢ = oo

We express the wave functions as a linear combination of the complete basis set of unperturbed wavefunctions,

0
P(x,t) = Z a, (t)¢1£ )(xa 1) < NOTE: The time evolution of
n the wave function depends
Substitution of this expression into the Schrodinger Equation yeilds, on the time evolution of the

weighing coefficients (to be
h o determined) and the known
0 0 0
H, Zan (t)¢r§ '(x,1)+gH' (t)z a, (t)¢1§ '(x,0)=— Tt (Z a, (t)¢15 '(x, t)] time evolution of the basis
n n 1 n unperturbed states (see
or previous slide)

D a,(OH 4" (x,0)+ D a,()gH (4 (x,1) = - d ZK% a, (t)jﬁi‘” (x, t)} . Z{an (t)(% " (x, t)ﬂ
n n 1

1< n

But from the unperturbed solution, the 1st and 4th terms cancel leaving :

The time dependent perturbation can be

Z a, (t)gH' (t)¢r§0) (x,t)=— E Z |:(§ a, (t)j¢rgo) (x, t):| 4—— described as a time evolution of the coefficients
. 15 t

of the basis set wave vectors.

As we have many times before, we multiply by a specific wave function, ¢\ (x, ¢), and integrate over all space,

- g%IZan Oy (e, OH' (D4 (x, )dv = IZK% a, (t)j@if)(x, ¢, (x, t)]dv

L0, (0= Y a, 0 4 OH O (v or S, (0 =g+ 3 a, (0O (0| 0] (1)
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Time Dependent Perturbation Theory

Important Observations: Since the weighting coefficients are known before the
perturbation, knowing the time derivative (rate of change) of the coefficients implies full
knowledge of the weighting coefficients after the perturbation occurs.

La, - -g%;am 40 GOl O ey or - S, ()= -g%;anu)@é?(x, N[ @

8 (x,0))

Each individual state is “connected” through the perturbation Hamiltonian. I.e. state “m”
is connected to every other state (all n states) via the perturbation Hamiltonian. If the
Hamiltonian does not allow a transition from one state to another (i.e. the matrix element
is zero) then the weighting coefficient for that state remains unchanged (i.e. static in
time).

The change in each individual coefficient in time depends on couplings between ALL
other available states!
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Time Dependent Perturbation Theory

Consider an expanded form of the previous equation:

£ 0,0 =25 Xa, (g (.0 [ 0] 1)

U
—ﬁ%am_o(z) @, (B0, O[H O 4% (6. 0) + a4, (@D D[H O (x0) + -+ a, (g2 (D [H O 4% (x0) + -
h o

—=—a,,() = a4 OFLEOHOF%ED) + a O EHHOEx0) + o+ a, O D[ O 0)
gl at. . . .

—ﬁ%an,_j(r> = 4, ({2 D[HO4% (. 0) + an O, (LDH O 4% (x0) + -+ a, ({0 (6n[H O)g%(x0) + -

Considering the vastness of this system of equations a simplification similar to what we
did for the unperturbed system is in order. Since the wave function evolution in time 1s
entirely determined by the coefficients, we will expand the coefficients in orders of g.
2
a,=a’ +g%+g2d—azj+--
g dg
or

=q® I B
a,=a; +ga,+ga,+
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Time Dependent Perturbation Theory

Using this expansion, the previous system of equations becomes:

_E;( ) +gao +g ao )_g( ) +ga0 +g ao +- X¢r§?)0(x t)‘H' (0) o(x, t)>+g( 0) +ga1 +g al +- )<¢r(r?)0(x t)‘H' (0)(x t)>+"'
+g( O +ga, +g’a; + )<¢r§?)0(x t)‘H' a2 (x, t)>
_E;( 0 +ga1 +g al ) g( - +gao +g ao +- )<¢r(r?)l(x t)‘H'(t) ¢r(10)0(x t)>+g( © +ga1 +g al +- )<¢(0) (O)(x t)>+"'
1

ot glal +ga, + g2+ ) g (x| (0] 42, (x.0))

— a‘(l.o) + ga'j + gza; +~-): g( O+ ga, + g’a, +- )<¢;O)J(x t)‘H' (t)‘ P2 (x, t)> + g( O 4 ga, +g’a, +- )<¢fno)J(x t)‘H' (t)‘ A2 (x, t)>

_7&(
+g( ) +ga +g° a +- )<¢§?)J(x t)‘H' Y L (x, t)>

For our purposes we will only consider 15t order time dependent perturbation theory (THANK Gob!).
For this we will consider only the linear terms in g. Again, for any choice of g, the terms on the
left hand side must equate to the terms of equal magnitude on the right hand side. This is done on
the following page...
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Time Dependent Perturbation Theory

Considering equality of the linear terms,

—% ay)= (af” Ko Ge. ) [ 0] % (e 00) + (o il (e 0 | 0 42 o)) -+ (o Kl e 0
=2 o) = ol Yo o O] )+ o Y, ) O, o)+ -+ a2 0 B ] ) C0)-

_?ﬁ(aj) ( (0>)< © ) (x, t)‘H' © (x, t)> ( 1<0>)< © ) (x, t)‘Hv > . +( (0))< ©0) ) (x, t)‘H'(t)

0,65,

The importance of this equation is that it is an approximate 1% order solution that only depends on the
stationary unperturbed coefficients and the unperturbed basis wave functions. Thus, it depends on the
initial condition (unperturbed coefficients and wave functions) of the system.

Each equation in the above system of equations represents the growth or decay of an individual
Eigenfunction’s magnitude and thus represents the growth or decay of the probability of the state being
occupied or empty.

All states are connected via the perturbation Hamiltonian, H’(t). Thus, if a particular state, say m=3,
grows (or decays) in amplitude, it must come at the expense of some other state, for example, m=11

decaying (or growing) in amplitude. The rate of growth or decay is set by the 3™ and 11% equations.
NOTE: this is just a simple example and in practice all states are coupled so growth and decay involves transitions from all states. In some
cases, the perturbation Hamiltonian will prevent certain transitions resulting in a inability to transition between states — called forbidden
transitions.
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Time Dependent Perturbation Theory

Example 1: Consider the case when the initial state of a system is known to be in only
the “jth” state (all zero coefficients except a=1) and the perturbation is turned on at time,
t=0 (i.e. H’(t)=H u(t) where H’ is a constant and u(t) is a step function.

H’()=H’u(t)

IH,

t=0 t

The systems of equations ...

al” = 12, (e, HH (0] 42 ()

(0) (x t)>

@ = 1) (x )1

.. reduces to equations of the form:

h 5( ) 1)<‘P(0)(x)

()

ot

i(E,(,,O) -E )/
‘Prfg)j(x)>e " form=0,1,2,---butm=#=j and 0

~
~

H'

| Ot
[ EO

where we have used the fact that since ¢” = ¥”(x e [ ! J then,

©
EOt | Eit

|

‘P(O) (X)e [
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Time Dependent Perturbation Theory
Thus, this general equation,

0.\ (—i |
% (@, )= (?jl@f) (x)[H W
can be directly integrated to result in:
, —1 '
a,(t)= (WJI<T$)(X) H

The integration constant can be evaluated by restricting a’_(t)=0 at t=0 resulting in,

O

PO (x)> “" form=0,1,2,---butm # j

(O)(x)> '+ Ku®t) form=0,1,2,---butm # j

L@y, it

PO (1) C

. 1)}u(t) form=0,1,2,---butm # |

mj
Finally, since the perturbation is defined as small, the jt coefficient is simply,

Sincefort <0a. =a'” thena. =0 and,
] ] J H’(t)=H’u(t)

fort > 0, a'j can be found through normalization of I
W

the total wavefunction but in general, a'j =~ (

=0 t
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Time Dependent Perturbation Theory

Important Observations:

o _ 1

w0 ()¢

a,'n(t): _%<LP§))(X)‘H' )u(t) form=0,1,2,---butm # j

mj

1) The matrix element in the above expression ( <...> term) is known as the transition
matrix element and describes which transitions are allowed and disallowed and how
strongly the mth and jth states are coupled.

2) If the transition matrix element integrand is odd (a very common occurrence) the
integral is 0 meaning that a transition between the mt and j state is forbidden.

3) In general, this transition matrix element is responsible for a variety of “selection
rules” in atomic, nuclear and semiconductor bulk/quantum well optical spectra
(emission or absorption resulting from electron/hole transitions between states).

4) Even though a specific transition is forbidden from say the j® state to the mt™ state, the
mth state may still eventually become populated by indirect (and thus slower)
transitions of the form j 2 k = m, etc...
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Example 2: Turning on a “Harmonic Perturbation™ at time t=0.

This case 1s important as many excitations such as
electromagnetic radiation, ac electric and magnetic fields all
can be periodic in nature. This problem proceeds identical to

Time Dependent Perturbation Theory

the previous example except:

(P () [H (1) 22, (x) )™

(¥ ()

(P2 (x)

H' (1) = A)(e + ¢ Ju(t)

t=0 t

form=0,1,2,---butm # j

A(X)(@im"t +e ! )u(t)‘ v (x)>eiw’”-"t form=0,1,2,---butm # j

A(X)‘ v (X)>eiw"”t (ei(”(’t + e_iw"t) form=0,1,2,---butm # ]

can be directly integrated to result in:

(ei(a)mj+m0)t _ 1) (ei(a)mj—wo)t _ 1)

0,(0)-

h

~ (P (x)|AR) ‘P§°§.<x)>J[

(@, +o,)

- u(t) form=0,1,2,---butm # j
(a)mj—coo)

Where the integration constant was again evaluated by restricting a’_(t)=0 at t=0.

Finally, since the perturbation is defined as small, the jth coefficient is simply,

Georgia Tech
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Time Dependent Perturbation Theory

Important Observations:

< 0=7 (P () |A)| W2, <x>>]{ (eemreek 1) (elemeok )

u(t) form=0,1,2,---butm # j

h (a)mj + (oo) (a)mj - 030)

1) Two resonances exist in the above coupling equation o =+/-o, where the coupling
between the mt and jth state is extremely strong. These resonances occur when the mth
state is exactly +/-hw_ away from the initially occupied j* state.

2) States not on resonance still can be coupled to the initially occupied jt state, but with a
lesser coupling strength than those directly on resonance.

3) While this equation predicts a strong coupling at resonance, a’_(t) = oo, our restriction
of a small perturbation (i.e. a’_(t) small) indicates that 15t order time dependent
perturbation theory is insufficient to accurately describe this case and thus, it is
expected that a’_(t) will NOT actually—> oo and that higher order approximations will
be needed to accurately describe this condition.

4)  Even though a specific transition is forbidden from say the j® state to the m'™ state, the
mt state may still eventually become populated by indirect (and thus slower)
transitions of the form j 2 k = m, etc...
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Fermi’s Golden Rule:

Time Dependent Perturbation Theory

Since the probability of state m being occupied is found by (‘¥ )*(‘¥, ) and due to the
normalization of the basis wave functions this reduces to (a’_(t))*(a’(t)). Thus, we need to
consider the value of (a'_(t))*(a (t)). To simplify this procedure, we note that only one
term in the square braces need be considered for the two cases near resonance.

a,(t)=

(@, (1) (2, (1) ~ 4

(@, (1)) (a, () ~ 4

@, + O,

(%9 ) |A)| P2 ))

2

~(PV () |A| WY, (x)q{ (e< b 1) (e< b 1)

oy o)

ny

sin’ (; ((omj -0, )tj

h2

(e oA ¥, 60|

((ij - (”o)z

sin’ (; (comj +o, ) tj

h2

(0, +0,f

}u(t) form=0,1,2,---butm # |

ut) forEY = EY +ho,

u(t) for BV ~ ESO) —ho,

The reason we make this simplification is that in deriving Fermi’s Golden Rule, the
functional form of the above equations will be convenient for integration. Before we
proceed lets examine these equations.
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Time Dependent Perturbation Theory

The probability of all states including “far off-resonant” states becoming occupied increases
with time.

t>>0 m
iy sk ﬂﬂnn ﬁ n ﬂﬁﬁﬁ As
P~
N
_ g
S| 0
*
P~
N
<
Ny
3 A A N A
—
o <0
O AGFO () ) sin® f(mmj—mo)t
(aln(t))*(a}n(t))ﬂ(@m( lac 2)‘LP":J( ) [2 j u(t) for EY ~E + ho,
h ((ij — (DO)Z i
and
_ 1 )
O AP ) | sin’ *((ij‘F(Do)t / \
(a;n(t))*(a;n(t))z4[<\ym( )A;z)\PFJ( )>‘ ((2 )z ] ut) for EY ~ EV - o, o o v o 0 - o
O, + O, N / N
Em NEj h(x)o Ej Em ~Ej +h(’00
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Time Dependent Perturbation Theory

Instead of discrete state to state transitions, it 1s often useful to consider a discrete state to
“band of states” transition. Examples of this are donor states to conduction band transitions,
acceptor states to valence band transitions or simply defect/impurity states to either
conduction/valence band transitions.

These bands can be described by their density per unit energy (see lecture 7) or since E=ho,
the density (number) per frequency  centered around the transition frequency = p(®,,).

Assuming that this density of states, p(®,,;), does not change quickly with ., we can find
the new probability density of state m by integrating the previous expression over ®,.. For
example,

NG
K\Pfﬁ)(x) ‘A(X)“P;OZ)J.(X)>‘ Sin (2 (@, —wo)tj

") [ea-al)]

,o(a)mj )da)mj for EY) = E + ho,

(@, (1)) e, (V) = |

2
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Time Dependent Perturbation Theory

\<‘P£§><x>\A(x)\‘Pf&(x)}\z Sinzﬁé(‘”mj‘“o)t)
hz |:; ((ij B O)O)j|2

Making some assumptions about this function:

1)  The transition matrix element is a slowly varying function of ®,.

2)  The density of states, p(m,,;), also does not change quickly with ®, ..

3) Both of the above two conditions can be achieved by noting that since the [sin?...]
function sharpens in in @, with increasing time, we can always wait long enough in
time to make this part of the integrand the most rapidly varying portion of the integrand
n o,

(@, (1)) (e, () = |

0 L RO
p(a) )da) forE;’ = E” + ho,

mj mj
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Time Dependent Perturbation Theory

...with these assumptions, the above expression becomes:

(0 (0 |A)| ¥, 0)
hZ

ﬁn( (o ‘_@)q
)j do, forEY ~EY +ho,

B ((’ij — 0, )T

p(a)mj )[27z t] forBY ~EY +ho,

P(“)mj

(@, (1)) (2, (1))~

(9 GolAco| w2, 00) |
hZ

(@, (1)) (2, (1))~

Hence the rate of change from a discrete state to a band of states is merely

the time derivative of the above expression,

Fermi’s Golden Rule:

W. d’(

o = a_ t)‘2 2;; ‘<‘P(°)(x) ‘A(x)“P;OZ)j(X)>‘2,O(E = E}O) + ha)o)

Where, since E=hw, we have replaced p(®) by the equivalent energy density of states, p(®) = hp(E).

One Final Note: Since Fermi’s Golden Rule was derived from 1% order time dependent perturbation theory, it is only valid for “short” times for which the initial state
occupancy does not significantly change. If you wait long enough after a perturbation this will eventually not be the case and higher order theories will be required.
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