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3.2 Hydrogen Atom

In section 3.1, we solved the two differential equations below where Eq. 3.2.1 is
dependent on phi and Eq. 3.2.2 which is dependent on theta
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In section 3.2, we will solve the radial dependent differential equation
and analyze its results in the context of the Hydrogen atom.
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The differential equation below is the radial dependent component of
the 3-D Schrodinger Equation in spherical coordinates
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We will relate our equation to the Hydrogen atom by
considering the form of V(r).

1 The potential of the Hydrogen
Vr)~— atom, V(r) is inversely
r proportional to r
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We will define an operator called the radial-momentum operator
p =l ( d +1j (3.2.4)
i\dr r

Using this operator we can redefine the differential term of
the kinetic energy operator in spherical coordinates as
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For the skeptics out there, the next slide will illustrate the
equivalence of Eq. 3.2.5 and the differential term of the kinetic
energy operator.
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Proof that the radial-momentum operator is equivalent
to the differential term of the kinetic energy operator:

differential term of
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So rewriting the kinetic energy operator in terms of p, results in
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Using Eq. 3.2.6, Schrddinger's Equation is given by
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u\r
Substituting LP(f")=¥ and Eq. 3.2.8 into Eq. 3.2.7
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where Z is the atomic number, q is the charge of an electron and r
is the distance between force center and particle under
observation.
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We can take some steps to make Eq. 3.2.9 dimensionless to
simplify our analysis. Defining

and E=Ec¢ (3.2.11)
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Substituting Eq. 3.2.11 and Eq. 3.2.10 into Eq. 3.2.9
results in
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Defining a, and E_ from Eq. 3.2.11 so that Eq. 3.2.12
is dimensionless
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Substituting Eq. 3.2.13 and Eq. 3.2.14 into Eq. 3.2.12 we get the
dimensionless expression of the Schrodinger's Equation
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a, is known as the Bohr radius which is considered to be the effective
radius of a Hydrogen atom. To calculate the Bohr radius we must
consider the cgs units for energy, length and electric charge.

Conversion between Sl and cgs.

The cgs unit for length is the centimeter. 100cm = 1m
The cgs unit for energy is the erg. lerg =1g-cm?/s’
10"erg=1J

The cgs units for electric charge is
“electrostatic unit” or esu.
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Now let us assume a power series solution to Eq. 3.2.15 of the form

p p P
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Applying the second derivative to the first term in Eq. 3.2.16,
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Substituting this result into Eq. 3.2.15 and the
first term of Eq. 3.2.16, we get
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Substituting the appropriate values for the physical constants into
Eqg. 3.2.20 and setting Z=1 since we are considering the Hydrogen
atom, we get

_13.6eV
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Equating the coefficients of pn-2 leads to
n(n—=1) I(l+1)
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Solving for /in terms of n we get
I>+1-n(n-1)=0

[=n-1 (3.2.22b)
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Now, we have defined three quantum numbers — n, I, m — that are
needed to specify the particles motion in a hydrogen atom.

What about the wave function of a particle in a
hydrogen atom?

To accomplish this we will redefine the power series solution
for Schrodinger's Equation
Yo
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Also
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Substituting the above result into Eq. 3.2.9 where V(r) is defined
as Eq. 3.2.10 and E is defined as Eq. 3.2.20, dividing out the
exponential terms and simplifying the result, we get

2 | Rua+n)  zg?
L PV S ( 2)g_ig:o (3.2.26)
2m na 2mr r

o




3.2 Hydrogen Atom

d(r) is defined as

— 75 q
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So the first and second derivatives of g(r) are
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We want to make Eq. 3.2.26 dimensionless so again we
substitute Eq. 3.2.11 into Eq. 3.2.26
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Substituting Eq. 3.2.11 into Eq. 3.2.27 and Eq. 3.2.28 and
substituting that result into Eq. 3.2.29 gives us
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Eqg. 3.2.30 must equal zero for all p. Therefore the coefficients of the
ps2 must sum to zero.

s(s—-1)—-I({+1)=0 (3.2.31)

The coefficients of the general term, ps*a-! are
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Solving for s in terms of / using Eq. 3.2.31 we find

s=1+1 (3.2.33)

Substituting Eq. 3.2.33 into Eq. 3.2.32 and solving for

Ag+1 We have

2
Url+g)=2 (3.2.34)

g+ q ((+g+2)([+g+1)=-I(l+1)

Note: 1/a, factor is absorbed by the A term.
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Eq. 3.2.34 can be reexpressed as

2
—(+1+g)-2
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Eq. 3.2.35 can be used to find the coefficients of the higher
order terms of Eq. 3.2.23. The general wave function for
the Hydrogen atom is defined by Eq. 3.2.36.

VY(r,0,9)=R(r)Y,(0,9) (3.2.36)

Eqg. 3.2.35 and Eq. 3.2.23 are used to define R(r) in Eq. 3.2.36
and Y, (8,®) is defined in Section 3.1.
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