Nearly-Free-Electron Model

Reading:
Brennan Chapter 8.3

Lecture prepared by Christopher Sconyers
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The Kronig-Penney Model (review)

The solution to the Schroedinger equation for a periodic rectangular barrier predicts
that only discrete bands of energy are allowed.
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Figure 8.2.3. Sketch of E(k) versus k for both a free particle (dashed
Brennan, Figure 8.2.1. One dimensional curve) and a particle in a periodic potential, Note the presence of gaps
periodic potential with period a+b. at multiples of 7 /{a + &) that correspond to the imaginary values of kin

Fig. 8.2.2.

According to this model, discontinuities in allowed energies appear at k=nz/(a+b),
where a and b relate to the periodicity of the rectangular potential.

What about any arbitrary periodic potential? Will discrete bands of energy show up
in the solution as expected?
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The Schroedinger Equation

Defining a periodic potential

Let’s start with the Schroedinger equation, and go from there:

HY = EY
d’ 2m
Y + E-T((x)¥Y =0
V-V (0]
d’ 2mE  2m
Y + — Vix)|V¥Y =0
Al ]
To simplify this, we will make two helpful substitutions
2mE
e Ko
2m

. Viix)=yf(x)

Finally, the Schroedinger equation becomes:

‘gf r 2+ o =0
X
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The Schroedinger Equation

Defining a periodic potential

dz\f w2+ o =0

dx
But how do we define this new f(x)? Well, we know two things about our
arbitrary periodic potential V(x):
* V(x) has a set lattice constant, or period, a.
* V(x) can be described as a Fourier series.

So, let’s expand f(x), a periodic function with the same periodicity as V(X), in
terms of a complex Fourier series.

f(x) _ Z Cne—i2a7rnx

n=-—

where C = Lj‘:f(x)e. “ dx

and vy 1s a scaling factor
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The Schroedinger Equation

Bloch functions and periodicity

As seen before, any periodic potential will result in a periodic wave function
of the form
. . . __ikr
n-dimensional: ¥ , (r)=¢e"'u , (r)

one dimensional : P, (x) = e"u, (x)

where u,(x) 1s periodic, with the same periodicity of the potential. Therefore,
we can expand it in terms of another complex Fourier series.

A —i 2 ;mx
u,(x)= ane ‘

n=—00

—i2 /mx

P(x)=e™ aneT
The wave function will retain the same magnitude each period a. Only its
phase will change from one lattice point to the next. The properties of the
Bloch function are retained.

But, this 1s not very useful unless we can relate this to f(x). So we will make a
few more observations about the nature of the wave function relating to the
periodic potential, and then solve the Schroedinger equation. Hopefully, we

can shine some light on this new wave function.
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The Schroedinger Equation
Relating f(x) to u,(x)

From before...

d*¥
P 2+ ()] =0
If y =0, then V(X) is zero and the electron is free, which is represented as a
simple plane wave. FENY
—+k, ¥ =0
dx

¥ (x) = bye™"
If y # 0, we assume the electron to be traveling in a weak potential, and can
thus expand the wave function into two parts. One corresponding to a plane

wave, or a free electron, and another corresponding to a periodic correction
factor. Hence the name, “nearly-free-electron model.”

—i2 mnx

¥ (x) = be™ + ye™ Z be °

\ ] I\ n;tOY )

“free electron” periodic correction
plane wave factor (small)
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Solving the Schroedinger Equation

First Order Solution

. . —i2mnx
¥ (x) = be™ + ye™ Z be ¢
n#0
Now we have a general solution for our arbitrary, periodic potential.

Remember, we are trying to determine if any periodic potential will result in
discrete energy bandgaps. To do this, we will want to solve for the energy
versus k relationship, which means we first must solve the Schroedinger
equation to find the coefficients b,. Plugging Y'(x) into our simplified
Schroedinger equation:
d ‘P

e+ o =0

The full derivation is not shown here (Brennan p.419). After substituting,
expanding the second-derivative term, and combining like terms, the result is:

by (k2 = k2™ + 3> (k2= k2,0

nz0

+b,y Cnei(k_zaﬂ)x +y° Cnbn,ei(k_%_%n,)x TOO
’ ,;O ;0 ZO COMPLEX!!

n 7/2 b (47271 k — 4n2n2¥i(k‘2%)x — 0

nz0
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Solving the Schroedinger Equation

First Order Solution

The problem already seems to have blown up. However, we made the
assumption that V(x) is weak, therefore y must be small, and the y? term
(fourth term) can be neglected. Also, we can further simplify the equation.
Consider only the terms in y.

7/2 (k2 k2 )b i (k= 2 ) n 7/2 (47m — 4;;2”2 )ei(k—z%)x

nz0 nz0

+boyz C e (k=2

nz0

We want to combine these into one simple term, and we can by defining the

following relation:
K=k, +2m

Combining the first two terms and substituting in the above relation:

7/2 (k2 k2 4+ 47m k — 472'2112 )?nei(k‘%)x 4 boyz Cnei(k‘%)x

a’
nz0 nz0

2 2 _ Azn 47°n° 4 47202 i (=222 )x i (- 22 )
y 3 (kg — k2 —amge, - SELUNEE Y gt P, e + 7Y b,C,e

a
nz0 nz0

i — 220 i — 2zn
I (T Sy S S AT 3 Kol

a
nz0 nz0
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Solving the Schroedinger Equation

First Order Solution

Continued...
r 2 ( e el s 45" k- 8’;#)[7”6"(}“27” +y> b,C, ik
nz0 ~
Y (eg k2 p,e’ i +7Zbce("‘%)x
nz0 m_—s

y > ez = k2, +b,0, 0

nz0

Putting this back into our previous equation, we get a much simpler form to
deal with:

by (k2 = k2™ + 3> (k2 = k2, + b,C, ) =

nz0

This will make our job much easier. Now for another trick...
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Solving the Schroedinger Equation

First Order Solution

by(k2 = k2™ + 3> [(k2 = k2, + byC, ) =

nz0

Let’s multiply the above equation by:

—ik ,, x
e

where k, =k — 2~

Then we’ll integrate over a full period (0 2 a):

bolkg =k ) e ax +y Y (ke - k2P, + bOCn]joaeA_M T de = 0

n#0
Note that the two integrals are of similar form, which has the following useful
property:

e “ dx = .
a 1f 1 =0

0

J‘am {O if 4 #0
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Solving the Schroedinger Equation

First Order Solution

bo (ke — k)] e ax + 2 (2 &2, + by, [T e ™ ax = 0
orae o 400
Case 1: m=0
bolkeg = k2 ) "dx + 7Y (k2 = k2, +5,C, ][ e ax =0
bo(ké—kz)w"fzo (k5 =%, + b,C, K0)= 0

bo(k2 =k )a =0

k =k,

Within the summation, n = 0. Therefore the integral 1s always zero when m=0.
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Solving the Schroedinger Equation

First Order Solution

bolkg = k2 ) e ax + 3> (kg k2, + 5,0, ][ e dx = 0
a 0 0 if A %0
Jy € dx:{a it 4 =0

Case2: m=0
bylky — k[ e O

bo (k2 = k2 X0)+ 7Y [k — 52D, + 5, ][ e T ax =0

0
nz0

ar + Y k2 - k2P, + bOCn]J‘aeM T dx = 0

0

The first term goes to zero for all m=0, and the second term goes to zero for all ms=n.
That only leaves the case when m=n. Lastly, we substitute K=k, in the final step.

y 3 e - k2, + bocn]Joa dx = 0

_7/[(koz _knza )bm "'bocm]a =0
b _ bOCm
b
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Solving the Schroedinger Equation

First Order Solution

Substituting the value for the coefficients into the wave function, and we’ve at
last found a first order solution for our electron in a periodic potential.

Y(x)= boe”“ + j/e”“ Z bne_izaﬂ

n+#0

WY (x) = bye™ + ye™ Z (k20 l”cz)e
n#0 n

v -ne |t

nz0

The implications of this wave function are immediately apparent. For n=0, the
term inside the brackets becomes 1 and the electron is represented as a plane
wave. For all other n, a small correction factor given by the summation and
scaled by y will slightly alter the plane wave periodically, with period a, as
formerly predicted. This is a free electron with a small, periodic correction.

However, the solution diverges when k=k, (the denominator goes to zero). A
singularity occurs in this case. Let’s move on and find this wave’s energy.
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What is the Energy of the Electron?

First Order Energy Correction

\P(x)zboe"k{ 7/2( ) 2”}

n=0

As before, we’ll start with a first-order solution (neglecting y°). We found
previously that k=k, in the first-order case. Plugging this in for the energy
solution:

nk® ke

2m 2m

E =

This tells us that for a first-order approximation, the energy of the electron in a
periodic potential is the same as the energy of a free electron. This must mean
that the energy correction factor has gone to zero for first-order. While the
first-order solution helped approximate the wave function, we will have to go
back to the second-order () to determine the energy of the electron.

b (k2 )ekx +7/Z [(k2 k )b +b ¢ ]e k_ZL Reminder

nz0

PE T et g b

nz0 n'#0

27m
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What is the Energy of the Electron?

Second Order Energy Correction

As before, multiply by e* and integrate over a full period (0 2 a):
bolkeg — k2 dx + 7Y (kg = &2, +5,C, ][ e ax

0
nz0

+ )/22 Z Cnbn,joaem“nwxdx =0

nz0 n'#0

bo(k2 =k Ja+7>Y C ,ba=0

n'#0

The second integral goes to zero, since n=0 for all n. The third integral goes
to zero in all cases except where n” = -n. Now, -n " has been substituted in for
all n, and the double summation becomes a single summation. Also...

i2 znx

n=-n = f(x)= iC_ne “

fy =3 Ce S
fO =@ = = Y e

. C_ =C,
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What is the Energy of the Electron?

Second Order Energy Correction

Continued...
= C

by (k2 -k )a+7/ S Clb,a=0

n#0
Plugging in the coefficients b, found in the first-order solution:
b,C,

NGE k)
boa(k? - k2)+bayz( ]zz):o

nz0

Dividing out b a and solving for (k,)?, we get:

Note: the singularity
has shown up again.
(at k=k,)
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What is the Energy of the Electron?

Second Order Energy Correction

Continued. ..
e
nz0 (k )
Multiply both sides by #°/2m to get:
2 2 2 *
e M s cle,
2m 2m 2m =0 (k —kn)
27 2
Recall =R g k, =k -~
m
271 2 2.2 *
po R 0y CC,
2m 2m 7o |_ — (k 2”") J

2

n
2 g2 _ﬁ( _m)zj
n#0 |_2m k 2m k a

1 Where V, = —

h2]/2
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Does this predict the expected Bandgaps?

Bandgap Location
2

+Z[h2 2—;—;”(/(—2%”)2] where V = — hz; C,

nz0

E(ky="

2m

We’ve finally derived a solution for the energy of the electron in relation to 4.
What we really want to know is if this properly predicts Bandgaps. In other
words, in any arbitrary, periodic potential, are there certain discrete bands of
energy that electrons are not allowed to populate? Recall...

b 2
hk + —1 Where k, =k -2~
2m n¢0|_ ? kn J

E =

We can see that a singularity appears in the energy at k’=(k )°, or at k=+k . At
these points, the correction term blows up to infinity, which is clearly not
possible. We can identify the location of these points in terms of k:

k=+k, k=—-k,

k =k — 2= —k =k -2
2 = () 2k = 2
n=>0 k=nZ
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Does this predict the expected Bandgaps?

Bandgap Location

k=nZ forallintegern

So now we know that a discontinuity exists at all points where k 1s an integer
multiple of 77a. We’re not through yet. Lastly, we must ensure that at these
points there is a jump in allowed energy, or a gap of disallowed energy values.

First, let’s compare this to the Kronig-Penney model (periodic rectangular
barrier). Recall, that model predicts bandgaps will occur at:

k =N ia:{bi
Where a and b are the width of the barrier and the spacing between barriers.
Adding the two together gives the period of the periodic potential. The

general solution for an arbitrary, periodic potential accurately predicts the
solution to the Kronig-Penney model. Why is this?

For any crystalline structure, as well as any periodic potential, Bragg
reflection at the Brillouin zone edges allow electrons to have only a certain
energy values. These zone edges occur at k=nzn/a, where a is the lattice
constant (period) of the periodic potential.
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Does this predict the expected Bandgaps?
Energy Values at the Bandgaps

Now we need to show that a Bandgap occurs at k=nz/a. To do this, we must
show that at these values of £, there are multiple values for energy.

Let’s go back to the wave function:

¥ (x) = be™ + ye™ z b e

n+#0

—i2 mnx

We’ll focus only on the points of interest: where k=k,. At these points, b,
blows up, so we will approximate the sum as only one term: b,.

—i2 mnx

¥ (x)=be™ +ye™b e
W (x) = bye™ + yb o/
¥ (x)=be™ + yb,e"
(where k, =k —2m)
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Does this predict the expected Bandgaps?
Energy Values at the Bandgaps

¥ (x)=be™ +yb,e""

Plugging this wave function into the Schroedinger equation, expanding the
second-derivative, and collecting like terms results in:

by (k2 = k2™ + yb, (k2 — k2 )¢50

b by Y € TN Ly S 2

n+0 n'#0

Now, we’ll perform two tricks on this equation to get two different equations.

Step 1: Multiply by e* and integrate over a full period (0 2 a):
—i2xz(n+n')x

i 2 Tnx

by (ke = k2 )+ pb, (ke = k2 )™ 4 75, Y. Cre ™ 4726, 3 Cre” ¢ =0
n#0 n'#0
by(ky — k)" dx + (0)+ (0)+ 75,y cn,jo‘le#—L‘””a““dx ~ 0
n'#0

bo(k02 —kz)a +y’bCla=0 (n'=-n)
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Does this predict the expected Bandgaps?
Energy Values at the Bandgaps

Step 2: Multiply by e“*~ and integrate over a full period (0 =2 a):

—i2 znx —i27an'x

bo(kZ = k2 e ™ 4 yb, (k2= k2 )+ 15, Y. C, +7%b, Y C,e

n#0 n'#0

=0

(0)+ 7b, (kg = &2 )" dx + yp,C, [ dx + (0)=0
rb, (ks — k] Ja+ yb,Ca =0

We end up with two equations and two unknowns. If we collect the
coefficients of the b, and b, terms into a matrix, then the determinant of these
coefficients must go to zero.

by (k2 = k*)+y%b,C. =0
b, (k= k2)+b,C, =0

k2-k*) yic. |
c,  (k-k2)
(k¢ -k Yk -k2)-r2CiC, =0
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Does this predict the expected Bandgaps?
Energy Values at the Bandgaps
(kg -k Neg - k2)-y7CrC, =0
Continued...
ki —kik’> —kik>+k’k’—y?C.C, =0
ki —2k2k? + k*k2—y?CiC, =0 (k7 =k?)

If we treat the above as a second-order polynomial in (k,)?, we can solve for
(k,)? using the quadratic formula:

2k + \J4k' —4k’k2 +4y°C.C,
2
kE=k*+Jak -4kt +y2ClC, (k=k,)

Kl =k JyiC.C,

k, =

Multiply by #%/2m:
h? h? h? .
k= k2 crC
2m 0 2m 2m \/7 S
h?o J Yt
E = k* £ cC'C
. .77 C.C,
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Does this predict the expected Bandgaps?

Energy Values at the Bandgaps
e’ ne "
E = k* + \/ =V 2Cn C,
2m 4m

Since we are solving for energy at the zone boundaries, then k=k, =nn/a.

Also, we can use the term ¥V inside the square root.

2 hz 2 *
= C C
2m ShEhd.

{3l
2m

, two distinct
P ”l 7T Ly / energy values
2m a at the zone edge

2

I’Z

ey
Il
Iy
[\
TN
S
N
N
[\
_|_

And so we have finally shown that not only do discontinuities occur at discrete
values of k, but these discontinuities correspond to jumps in allowed electron
energy, and this holds true for any periodic potential. The gap widths can be
calculated from the Fourier coefficients of the potential.

h2

AE =2V,
2m
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