
Georgia Tech ECE 6451

Nearly-Free-Electron Model

Reading:
Brennan Chapter 8.3

Lecture prepared by Christopher Sconyers



Georgia Tech ECE 6451

The Kronig-Penney Model (review)

According to this model, discontinuities in allowed energies appear at k=nπ/(a+b), 
where a and b relate to the periodicity of the rectangular potential.
What about any arbitrary periodic potential?  Will discrete bands of energy show up 
in the solution as expected?

The solution to the Schroedinger equation for a periodic rectangular barrier predicts 
that only discrete bands of energy are allowed.

Brennan, Figure 8.2.1. One dimensional
periodic potential with period a+b.
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The Schroedinger Equation
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Defining a periodic potential
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Let’s start with the Schroedinger equation, and go from there:

To simplify this, we will make two helpful substitutions

Finally, the Schroedinger equation becomes:
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The Schroedinger Equation

But how do we define this new f(x)?  Well, we know two things about our 
arbitrary periodic potential V(x):

• V(x) has a set lattice constant, or period, a.
• V(x) can be described as a Fourier series.

Defining a periodic potential
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So, let’s expand f(x), a periodic function with the same periodicity as V(x), in 
terms of a complex Fourier series.
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The Schroedinger Equation

As seen before, any periodic potential will result in a periodic wave function 
of the form

Bloch functions and periodicity
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where uk(x) is periodic, with the same periodicity of the potential.  Therefore, 
we can expand it in terms of another complex Fourier series.
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The wave function will retain the same magnitude each period a.  Only its 
phase will change from one lattice point to the next.  The properties of the 
Bloch function are retained.
But, this is not very useful unless we can relate this to f(x).  So we will make a 
few more observations about the nature of the wave function relating to the 
periodic potential, and then solve the Schroedinger equation.  Hopefully, we 
can shine some light on this new wave function.
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The Schroedinger Equation

From before…
Relating f(x) to uk(x)
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If γ = 0, then V(x) is zero and the electron is free, which is represented as a 
simple plane wave.
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If γ ≠ 0, we assume the electron to be traveling in a  weak potential, and can 
thus expand the wave function into two parts.  One corresponding to a plane 
wave, or a free electron, and another corresponding to a periodic correction 
factor.  Hence the name, “nearly-free-electron model.”
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Solving the Schroedinger Equation

Now we have a general solution for our arbitrary, periodic potential.  
Remember, we are trying to determine if any periodic potential will result in 
discrete energy bandgaps.  To do this, we will want to solve for the energy 
versus k relationship, which means we first must solve the Schroedinger
equation to find the coefficients bn.  Plugging Ψ(x) into our simplified 
Schroedinger equation:

First Order Solution
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The full derivation is not shown here (Brennan p.419). After substituting, 
expanding the second-derivative term, and combining like terms, the result is:

( ) ( ) ( )

( ) ( )

( ) ( ) 0
0

44

0 0

2

0
0

0

22
0

22
00

2

2

22

222

2

=−+

++

−+−

∑

∑ ∑∑

∑

≠

−

≠ ≠′

−−
′

≠

−

≠

−

′

n

xki
a

n
a

n
n

n n

xki
nn

n

xki
n

n

xki
n

ikx

a
n

a
n

a
n

a
n

a
n

ekb

ebCeCb

ebkkekkb

π

πππ

π

ππγ

γγ

γ

TOO
COMPLEX!!



Georgia Tech ECE 6451

Solving the Schroedinger Equation

The problem already seems to have blown up.  However, we made the 
assumption that V(x) is weak, therefore γ must be small, and the γ2 term 
(fourth term) can be neglected.  Also, we can further simplify the equation.  
Consider only the terms in γ.

First Order Solution

We want to combine these into one simple term, and we can by defining the 
following relation:
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Combining the first two terms and substituting in the above relation:
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )∑∑

∑∑

∑∑

≠

−

≠

−

≠

−

≠

−

≠

−

≠

−

+−++−−

+−+−−−

+−+−

0
0

0

848422
0

0
0

0

444422
0

0
0

0

4422
0

22

2

22

2

22

22

2

22

2

22

22

2

22

n

xki
n

n

xki
na

n
a

n
a

n
a

n
n

n

xki
n

n

xki
na

n
a

n
a

n
na

n
n

n

xki
n

n

xki
na

n
a

n

a
n

a
n

a
n

a
n

a
n

a
n

eCbebkkkk

eCbebkkkk

eCbebkkk

ππ

ππ

ππ

γγ

γγ

γγ

ππππ

ππππ

ππ



Georgia Tech ECE 6451

Continued…
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Putting this back into our previous equation, we get a much simpler form to 
deal with:
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This will make our job much easier.  Now for another trick…

Solving the Schroedinger Equation
First Order Solution
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Solving the Schroedinger Equation

Let’s multiply the above equation by:

First Order Solution
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Solving the Schroedinger Equation

Case 1:  m = 0

First Order Solution
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Solving the Schroedinger Equation

Case 2:  m ≠ 0

First Order Solution
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The first term goes to zero for all m≠0, and the second term goes to zero for all m≠n.  
That only leaves the case when m=n.  Lastly, we substitute k=k0 in the final step.
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Substituting the value for the coefficients into the wave function, and we’ve at 
last found a first order solution for our electron in a periodic potential.

Solving the Schroedinger Equation
First Order Solution
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The implications of this wave function are immediately apparent. For n=0, the 
term inside the brackets becomes 1 and the electron is represented as a plane 
wave.  For all other n, a small correction factor given by the summation and 
scaled by γ will slightly alter the plane wave periodically, with period a, as 
formerly predicted.  This is a free electron with a small, periodic correction.
However, the solution diverges when k=kn (the denominator goes to zero).  A 
singularity occurs in this case.  Let’s move on and find this wave’s energy.
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What is the Energy of the Electron?

As before, we’ll start with a first-order solution (neglecting γ2).  We found 
previously that k=k0 in the first-order case.  Plugging this in for the energy 
solution:

First Order Energy Correction

( ) 







−

−=Ψ ∑
≠

−

0
220

2

1)(
n n

nikx a
nxi

e
kk

Cebx
π

γ

m
k

m
kE

22

2
0

222 hh
==

This tells us that for a first-order approximation, the energy of the electron in a 
periodic potential is the same as the energy of a free electron. This must mean 
that the energy correction factor has gone to zero for first-order.  While the 
first-order solution helped approximate the wave function, we will have to go 
back to the second-order (γ2) to determine the energy of the electron.
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What is the Energy of the Electron?

As before, multiply by e-ikx and integrate over a full period (0 a):

Second Order Energy Correction

( ) ( )[ ]
( )

( ) 0

0

0

222
00

0 0
0

2

0
00

22
00

22
00

2

2

=+−

=+

+−+−

∑

∑ ∑ ∫

∑ ∫∫

≠′
′′−

≠ ≠′
′

≠
′+−

−

n
nn

n n

a

nn

n

a

nnn

a

abCakkb

dxebC

dxeCbbkkdxkkb

a
xnni

a
nxi

γ

γ

γ

π

π

The second integral goes to zero, since n≠0 for all n.  The third integral goes 
to zero in all cases except where n´ = -n.  Now, -n´ has been substituted in for 
all n, and the double summation becomes a single summation.  Also…
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What is the Energy of the Electron?

Plugging in the coefficients bn found in the first-order solution:

Second Order Energy Correction
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What is the Energy of the Electron?

Continued…

Second Order Energy Correction
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Does this predict the expected Bandgaps?

We’ve finally derived a solution for the energy of the electron in relation to k.  
What we really want to know is if this properly predicts Bandgaps.  In other 
words, in any arbitrary, periodic potential, are there certain discrete bands of 
energy that electrons are not allowed to populate?  Recall…

Bandgap Location
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We can see that a singularity appears in the energy at k2=(kn)2, or at k=±kn.  At 
these points, the correction term blows up to infinity, which is clearly not 
possible.  We can identify the location of these points in terms of k:
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So now we know that a discontinuity exists at all points where k is an integer 
multiple of π/a.  We’re not through yet.  Lastly, we must ensure that at these 
points there is a jump in allowed energy, or a gap of disallowed energy values.
First, let’s compare this to the Kronig-Penney model (periodic rectangular 
barrier).  Recall, that model predicts bandgaps will occur at:

Does this predict the expected Bandgaps?
Bandgap Location

 nnk a integer allfor    π=

( )bank += π

Where a and b are the width of the barrier and the spacing between barriers.  
Adding the two together gives the period of the periodic potential.  The 
general solution for an arbitrary, periodic potential accurately predicts the 
solution to the Kronig-Penney model.  Why is this?
For any crystalline structure, as well as any periodic potential, Bragg 
reflection at the Brillouin zone edges allow electrons to have only a certain 
energy values.  These zone edges occur at k=nπ/a, where a is the lattice 
constant (period) of the periodic potential.
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Does this predict the expected Bandgaps?

Now we need to show that a Bandgap occurs at k=nπ/a.  To do this, we must 
show that at these values of k, there are multiple values for energy.
Let’s go back to the wave function:

Energy Values at the Bandgaps
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Does this predict the expected Bandgaps?

Plugging this wave function into the Schroedinger equation, expanding the 
second-derivative, and collecting like terms results in:

Energy Values at the Bandgaps
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Now, we’ll perform two tricks on this equation to get two different equations.
Step 1:  Multiply by e-ikx and integrate over a full period (0 a):
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Does this predict the expected Bandgaps?

Step 2:  Multiply by e-iknx and integrate over a full period (0 a):

Energy Values at the Bandgaps
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We end up with two equations and two unknowns.  If we collect the 
coefficients of the b0 and bn terms into a matrix, then the determinant of these 
coefficients must go to zero.
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Does this predict the expected Bandgaps?

Continued…

Energy Values at the Bandgaps
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If we treat the above as a second-order polynomial in (k0)2, we can solve for 
(k0)2 using the quadratic formula:
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Multiply by ħ2/2m: 
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Since we are solving for energy at the zone boundaries, then k=kn=nπ/a.  
Also, we can use the term Vn inside the square root.

Does this predict the expected Bandgaps?
Energy Values at the Bandgaps
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And so we have finally shown that not only do discontinuities occur at discrete 
values of k, but these discontinuities correspond to jumps in allowed electron 
energy, and this holds true for any periodic potential.  The gap widths can be 
calculated from the Fourier coefficients of the potential.
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